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The inverse for f is denoted by f~!. By the definition of the inverse,
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Proof. Assume that f : X — Y s invertible and prove that f is a bijection.

To show injectivity, assume that f(x1) = f(x2) for some z1, 9 € X .
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Theorem. A map is invertible iff it is a bijection.

Proof. Assume that f : X — Y s invertible and prove that f is a bijection.

To show injectivity, assume that f(x1) = f(x2) for some z1, 9 € X .
Apply f~1 (it exists since f is invertible) to this identity:

FUf @) = £ (@) = a1 = s

By this, f is injective.
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Proof. Assume that f : X — Y s invertible and prove that f is a bijection.

To show injectivity, assume that f(x1) = f(x2) for some z1, 9 € X .
Apply f~1 (it exists since f is invertible) to this identity:

fHf(1) = 71 (f(22)) = 21 =22,

By this, f is injective.

To show surjectivity, take any y € Y and apply f~!.
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Theorem. A map is invertible iff it is a bijection.

Proof. Assume that f : X — Y s invertible and prove that f is a bijection.

To show injectivity, assume that f(x1) = f(x2) for some z1, 9 € X .
Apply f~1 (it exists since f is invertible) to this identity:

fHf(1) = 71 (f(22)) = 21 =22,

By this, f is injective.

To show surjectivity, take any y € Y and apply f~1. Let z = f~1(y).
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Theorem. A map is invertible iff it is a bijection.

Proof. Assume that f : X — Y s invertible and prove that f is a bijection.

To show injectivity, assume that f(x1) = f(x2) for some z1, 9 € X .
Apply f~1 (it exists since f is invertible) to this identity:
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To show surjectivity, take any y € Y and apply f~1. Let z = f~1(y).
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By this, f is injective.
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Theorem. A map is invertible iff it is a bijection.
Proof. Assume that f : X — Y s invertible and prove that f is a bijection.
To show injectivity, assume that f(x1) = f(x2) for some z1, 9 € X .
Apply f~1 (it exists since f is invertible) to this identity:
fHf(1) = 71 (f(22)) = 21 =22,
By this, f is injective.
To show surjectivity, take any y € Y and apply f~1. Let z = f~1(y).
So for any y € Y there exists © € X, namely z = f~1(y),
such that f(x)
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Theorem. A map is invertible iff it is a bijection.

Proof. Assume that f : X — Y s invertible and prove that f is a bijection.
To show injectivity, assume that f(x1) = f(x2) for some z1, 9 € X .
Apply f~1 (it exists since f is invertible) to this identity:

fHf(1) = 71 (f(22)) = 21 =22,

By this, f is injective.

To show surjectivity, take any y € Y and apply f~1. Let z = f~1(y).

So for any y € Y there exists © € X, namely z = f~1(y),

such that f(z) = f(f 1(y))
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Theorem. A map is invertible iff it is a bijection.

Proof. Assume that f : X — Y s invertible and prove that f is a bijection.
To show injectivity, assume that f(x1) = f(x2) for some z1, 9 € X .
Apply f~1 (it exists since f is invertible) to this identity:

fHf(1) = 71 (f(22)) = 21 =22,

By this, f is injective.

To show surjectivity, take any y € Y and apply f~1. Let z = f~1(y).

So for any y € Y there exists © € X, namely z = f~1(y),

such that f(z) = f(f~'(y)) = y.
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Theorem. A map is invertible iff it is a bijection.

Proof. Assume that f : X — Y s invertible and prove that f is a bijection.

To show injectivity, assume that f(x1) = f(x2) for some z1, 9 € X .
Apply f~1 (it exists since f is invertible) to this identity:

fHf(1) = 71 (f(22)) = 21 =22,

By this, f is injective.

To show surjectivity, take any y € Y and apply f~1. Let z = f~1(y).
So for any y € Y there exists © € X, namely z = f~1(y),

such that f(z) = f(f~'(y)) = y.

By this, f is surjective.
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Proof. Assume that f : X — Y s invertible and prove that f is a bijection.
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Apply f~1 (it exists since f is invertible) to this identity:
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By this, f is injective.

To show surjectivity, take any y € Y and apply f~1. Let z = f~1(y).
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By this, f is surjective.

We have proved that f is injective and surjective,
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Theorem. A map is invertible iff it is a bijection.

Proof. Assume that f : X — Y s invertible and prove that f is a bijection.

To show injectivity, assume that f(x1) = f(x2) for some z1, 9 € X .
Apply f~1 (it exists since f is invertible) to this identity:

fHf(1) = 71 (f(22)) = 21 =22,

By this, f is injective.

To show surjectivity, take any y € Y and apply f~1. Let z = f~1(y).
So for any y € Y there exists © € X, namely z = f~1(y),

such that f(z) = f(f~'(y)) = y.

By this, f is surjective.

We have proved that f is injective and surjective, therefore, f is bijective.
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Theorem. A map is invertible iff it is a bijection.

Proof. Assume that f : X — Y s invertible and prove that f is a bijection.

To show injectivity, assume that f(x1) = f(x2) for some z1, 9 € X .
Apply f~1 (it exists since f is invertible) to this identity:

fHf(1) = 71 (f(22)) = 21 =22,

By this, f is injective.

To show surjectivity, take any y € Y and apply f~1. Let z = f~1(y).
So for any y € Y there exists © € X, namely z = f~1(y),

such that f(z) = f(f~'(y)) = y.

By this, f is surjective.
We have proved that f is injective and surjective, therefore, f is bijective.

The half of the proof is done!
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By definition of bijectivity, Vy €Y dlaxe X y= f(x).
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Let us prove that ¢ is the inverse for f.
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Assume now that f is a bijection, and prove that f is invertible.

By definition of bijectivity, Vy €Y dlaxe X y= f(x).

Define a map ¢g:Y — X by the formula g(y) = x, where y = f(z).

Let us prove that ¢ is the inverse for f.

VeeX (gof)(z)=9(f(z))=g(y)=z. So gof=idx.

vyeY (fog)ly)=flg(y)=[f(z)=y. So [fog=idy.

Therefore, by the definition of the inverse, ¢ is the inverse for f, g= f~!.

Thus, f is invertible.
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Assume now that f is a bijection, and prove that f is invertible.

By definition of bijectivity, Vy €Y dlaxe X y= f(x).

Define a map ¢g:Y — X by the formula g(y) = x, where y = f(z).

Let us prove that ¢ is the inverse for f.

VeeX (gof)(z)=9(f(z))=g(y)=z. So gof=idx.

vyeY (fog)ly)=flg(y)=[f(z)=y. So [fog=idy.

Therefore, by the definition of the inverse, ¢ is the inverse for f, g= f~!.

Thus, f is invertible. And the other half of the proof is done!
/\ Warning.
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Assume now that f is a bijection, and prove that f is invertible.

By definition of bijectivity, Vy €Y dlaxe X y= f(x).

Define a map ¢g:Y — X by the formula g(y) = x, where y = f(z).

Let us prove that ¢ is the inverse for f.

VeeX (gof)(z)=9(f(z))=g(y)=z. So gof=idx.

vyeY (fog)ly)=flg(y)=[f(z)=y. So [fog=idy.

Therefore, by the definition of the inverse, ¢ is the inverse for f, g= f~!.

Thus, f is invertible. And the other half of the proof is done!

/\ Warning. The symbol f~! is used in two ways.

1. f~! denotes the inverse map for f if f is invertible.
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Therefore, by the definition of the inverse, ¢ is the inverse for f, g= f~!.

Thus, f is invertible. And the other half of the proof is done!

/\ Warning. The symbol f~! is used in two ways.
1. f~! denotes the inverse map for f if f is invertible.

2. f~Y(B) denotes the preimage of a set B under under any f

[]

(not necessarily invertible).

24 / 30



MAT 250

. L reb
Corollaries Maoe

25 / 30



MAT 250

COI’O"aries Il;/tla;:ture 5
ps

Corollary 1.

25 / 30



MAT 250

. Lecture 5
Corollaries Mnare

Corollary 1. For any set X,

25 / 30



MAT 250

. Lecture 5
Corollaries Mooe®

Corollary 1. For any set X, the identity map idx is a bijection.

25 / 30



MAT 250

. Lecture 5
Corollaries Mooe®

Corollary 1. For any set X, the identity map idx is a bijection.
Proof.

25 / 30



MAT 250

. Lecture 5
Corollaries Mooe®

Corollary 1. For any set X, the identity map idx is a bijection.

Proof. Since idx is invertible

25 / 30



MAT 250

. Lecture 5
Corollaries Mooe®

Corollary 1. For any set X, the identity map idx is a bijection.

Proof. Since idy is invertible (idy' = idx ),

25 / 30



MAT 250

. Lecture 5
Corollaries Mooe®

Corollary 1. For any set X, the identity map idx is a bijection.

Proof. Since idy is invertible (idy' =idx ), it is a bijection. O

25 / 30



MAT 250

. Lecture 5
Corollaries Mooe®

Corollary 1. For any set X, the identity map idx is a bijection.

Proof. Since idy is invertible (idy' =idx ), it is a bijection. O

Corollary 2.

25 / 30



MAT 250

. Lecture 5
Corollaries Mooe®

Corollary 1. For any set X, the identity map idx is a bijection.

Proof. Since idy is invertible (idy' =idx ), it is a bijection. O

Corollary 2. If f is a bijection,

25 / 30



MAT 250

. Lecture 5
Corollaries Mooe®

Corollary 1. For any set X, the identity map idx is a bijection.

Proof. Since idy is invertible (idy' =idx ), it is a bijection. O

Corollary 2. If f is a bijection, then f~! is also a bijection,

25 / 30



MAT 250

. Lecture 5
Corollaries Mooe®

Corollary 1. For any set X, the identity map idx is a bijection.

Proof. Since idy is invertible (idy' =idx ), it is a bijection. O

Corollary 2. If f is a bijection, then f~! is also a bijection, and (f~1)~! = f.

25 / 30



MAT 250

. Lecture 5
Corollaries Mooe®

Corollary 1. For any set X, the identity map idx is a bijection.

Proof. Since idy is invertible (idy' =idx ), it is a bijection. O

Corollary 2. If f is a bijection, then f~! is also a bijection, and (f~1)~! = f.
Proof.

25 / 30



MAT 250

. Lecture 5
Corollaries Mooe®

Corollary 1. For any set X, the identity map idx is a bijection.

Proof. Since idy is invertible (idy' =idx ), it is a bijection. O

Corollary 2. If f is a bijection, then f~! is also a bijection, and (f~1)~! = f.
Proof. Let f: X — Y be a bijection.

25 / 30



MAT 250

. Lecture 5
Corollaries Mooe®

Corollary 1. For any set X, the identity map idx is a bijection.

Proof. Since idy is invertible (idy' =idx ), it is a bijection. O

Corollary 2. If f is a bijection, then f~! is also a bijection, and (f~1)~! = f.
Proof. Let f: X — Y be a bijection. Then f is invertible,

25 / 30



MAT 250

. Lecture 5
Corollaries Mooe®

Corollary 1. For any set X, the identity map idx is a bijection.

Proof. Since idy is invertible (idy' =idx ), it is a bijection. O

Corollary 2. If f is a bijection, then f~! is also a bijection, and (f~1)~! = f.
Proof. Let f: X — Y be a bijection. Then f is invertible, that is
there exists f~1:Y — X

25 / 30



MAT 250

. Lecture 5
Corollaries Mooe®

Corollary 1. For any set X, the identity map idx is a bijection.

Proof. Since idy is invertible (idy' =idx ), it is a bijection. O

Corollary 2. If f is a bijection, then f~! is also a bijection, and (f~1)~! = f.
Proof. Let f: X — Y be a bijection. Then f is invertible, that is
there exists =1 :Y — X such that

25 / 30



MAT 250

. Lecture 5
Corollaries Mooe®

Corollary 1. For any set X, the identity map idx is a bijection.

Proof. Since idy is invertible (idy' =idx ), it is a bijection. O

Corollary 2. If f is a bijection, then f~! is also a bijection, and (f~1)~! = f.
Proof. Let f: X — Y be a bijection. Then f is invertible, that is
there exists f~1:Y — X suchthat f~lof=idy and fo f~!=idy

25 / 30



MAT 250

. Lecture 5
Corollaries Mooe®

Corollary 1. For any set X, the identity map idx is a bijection.

Proof. Since idy is invertible (idy' =idx ), it is a bijection. O

Corollary 2. If f is a bijection, then f~! is also a bijection, and (f~1)~! = f.
Proof. Let f: X — Y be a bijection. Then f is invertible, that is
there exists f~1:Y — X suchthat f~lof=idy and fo f~!=idy

In these identities, what is f from the point of view of f=17?

25 / 30



MAT 250

. Lecture 5
Corollaries Mooe®

Corollary 1. For any set X, the identity map idx is a bijection.

Proof. Since idy is invertible (idy' =idx ), it is a bijection. O

Corollary 2. If f is a bijection, then f~! is also a bijection, and (f~1)~! = f.
Proof. Let f: X — Y be a bijection. Then f is invertible, that is

there exists f~1:Y — X suchthat f~lof=idy and fo f~!=idy

In these identities, what is f from the point of view of f=17?

f is the inverse for f~11

25 / 30



MAT 250
Lecture 5

Corollaries Mo

Corollary 1. For any set X, the identity map idx is a bijection.

Proof. Since idy is invertible (idy' =idx ), it is a bijection. O

Corollary 2. If f is a bijection, then f~! is also a bijection, and (f~1)~! = f.
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Example 1. Let exp: R — Ry, x+— e* be the exponential function.
It is monotonic and surjective, therefore invertible.

Its inverse is In: Ryg - R, y—lny.

By the definition of the inverse, f~'lo f=idx and fo f~! =idy.

In our case, these identities turn to

In(exp(x)) = for all x € R and exp(In(y)) =y for all y € Ryg.

We get used to see these identities in the form
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It is monotonic and surjective, therefore invertible.
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Its inverse is arctan : R — (—5, 5) , Y — arctany .

By the definition of the inverse,

arctan(tanx) = x for all z € (—g, g) and

tan(arctany) =y for all y € R.

/N\ Warning. Using the symbol tan~! for the inverse for tan is ambiguous.
1
1

It may be understood as tan™ " x = = cot x.

tanx

To avoid this ambiguity, always use arctanx
as a notation for the inverse function for tan .
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