Homework 2

Oleg Viro

February 10, 2016

 $(0,t)\mapsto (x,y)$, where (x,y) is the intersection point of $x^2+y^2=1$ and y=t(x+1).

 $(0,t)\mapsto (x,y)$, where (x,y) is the intersection point of $x^2+y^2=1$ and y=t(x+1).

Substitute:

$$x^2 + t^2(x+1)^2 = 1$$
.

 $(0,t)\mapsto (x,y)$, where (x,y) is the intersection point of $x^2+y^2=1$ and y=t(x+1).

Substitute:

$$x^2 + t^2(x+1)^2 = 1.$$

Simplify:

$$(1+t^2)x^2 + 2t^2x + t^2 - 1 = 0$$

 $(0,t)\mapsto (x,y)$, where (x,y) is the intersection point of $x^2+y^2=1$ and y=t(x+1).

Substitute:

$$x^2 + t^2(x+1)^2 = 1.$$

Simplify:

$$(1+t^2)x^2 + 2t^2x + t^2 - 1 = 0$$

$$(0,t)\mapsto (x,y)$$
, where (x,y) is the intersection point of $x^2+y^2=1$ and $y=t(x+1)$.

Substitute:

$$x^2 + t^2(x+1)^2 = 1.$$

Simplify:

$$(1+t^2)x^2 + 2t^2x + t^2 - 1 = 0$$

$$(1+t^2)x^2 + 2t^2x + t^2 - 1 = (1+t^2)x^2 + (1+t^2)x - (1+t^2)x + 2t^2x + t^2 - 1 =$$

$$(0,t)\mapsto (x,y)$$
, where (x,y) is the intersection point of $x^2+y^2=1$ and $y=t(x+1)$.

Substitute:

$$x^2 + t^2(x+1)^2 = 1.$$

Simplify:

$$(1+t^2)x^2 + 2t^2x + t^2 - 1 = 0$$

$$\begin{aligned} &(1+t^2)x^2+2t^2x+t^2-1=\\ &(1+t^2)x^2+(1+t^2)x-(1+t^2)x+2t^2x+t^2-1=\\ &(1+t^2)x(x+1)+(t^2-1)(x+1)=(x+1)((1+t^2)x-(t^2-1))\,. \end{aligned}$$

$$(0,t)\mapsto (x,y)$$
, where (x,y) is the intersection point of $x^2+y^2=1$ and $y=t(x+1)$.

Substitute:

$$x^2 + t^2(x+1)^2 = 1$$
.

Simplify:

$$(1+t^2)x^2 + 2t^2x + t^2 - 1 = 0$$

$$\begin{array}{l} (1+t^2)x^2+2t^2x+t^2-1=\\ (1+t^2)x^2+(1+t^2)x-(1+t^2)x+2t^2x+t^2-1=\\ (1+t^2)x(x+1)+(t^2-1)(x+1)=(x+1)((1+t^2)x-(t^2-1)) \,.\\ x=\frac{1-t^2}{1+t^2},\;y=t(x+1)= \end{array}$$

Problem 1.1

Find all rational solutions of the equation

$$x^2 + y^2 + 3 = 0.$$

Problem 1.2

Find all rational solutions of the equation

$$x^2 + y^2 - 3 = 0.$$

Problem 1.3

Find all rational solutions of the equation

$$x^2 - xy + y^2 - 4x + 2y + 4 = 0.$$

Problem 2.1

Find all integer solutions of the following equation

$$x^2 + y^2 - 5z^2 = 0.$$

Problem 2.2

Find all integer solutions of the following equation

$$x^2 - 3y^2 + z^2 = 0.$$