
Metric, neighborhoods, topology

Oleg Viro

In modern mathematics there is a large part related to notions of con-
tinuity. In this part, a background environment and commonly accepted
language are built around the notion of topological space and continuous
map. These notions are not complicated.

Below a short motivation for the notion of topological space is given. It
starts with the definition of metric space, as usual. The topological notions
that are introduced in a metric setup, are limited to the notion of neighbor-
hood.

Then a few natural properties of neighborhoods are collected and pro-
claimed to be axioms, which define the structure in an abstract set. Secretly,
this is a definition of topological structure. It comes motivated. It looks more
complicated than the standard definition of topological structure in terms of
open sets. The standard definition is given immediately after that, and then
equivalence of these two approaches is carefully stated and proved.

1 Metric Spaces

1.1 Distances

In many mathematical contexts, we meet sets, in which it makes sense to
speak about distances between their elements. For example, in the set of
real numbers R for a distance between real numbers a and b it is natural to
take |a− b|.

In all such situations we expect that distances have some properties.
Namely, a distance is expected to be a non-negative real number, the dis-
tance between a and b is zero if and only if a = b; the distance from a to
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b is the same as the distance from b to a. Finally, the distance from a to
b does not exceed the sum of distances from a to c and from c to b. These
properties are called axioms of metric. Here are there usual formulations.

Let S be a set. A function d : S × S → R+ = {x ∈ R | x ≥ 0 } is called a
metric (or distance function) on S if

AxM1 d(a, b) = 0 iff a = b;

AxM2 d(a, b) = d(b, a) for any a, b ∈ S;

AxM3 d(a, b) ≤ d(a, c) + d(c, b) for any a, b, c ∈ S.

The pair (S, d), where d is a metric on S, is called a metric space. Elements
of the set S are called points. The third axiom of metric is called the triangle
inequality .

1.2 Examples of metric spaces

The line R with d(a, b) = |a− b| mentioned above is a metric space.

The usual distance between points on the plane can be calculated in terms
of coordinates of these points using the Pythagoras theorem. This gives the
following example of a metric space: the plane R2 with d((a1, a2), (b1, b2)) =√

(a1 − b1)2 + (a2 − b2)2.

Generalization: the function Rn × Rn → R+ : (a, b) 7→
√∑n

i=1(ai − bi)2
is a metric on Rn. It is called the Euclidean metric. I skip a proof that this
is a metric. Verification of the first two axioms of metric is straightforward.
Verification for the triangle inequality is more complicated, but can be found
easily.

The first two examples are special cases of the third one with n = 1 and
2, respectively. These metrics are always meant when R or Rn are considered
as metric spaces, unless other metric is specified explicitly.

Of course, there are many metrics on the same set. For example, given a
metric d, one can build another metric just by multiplying d by any positive
constant.

Any set S with the function

d : S × S → R+ : (x, y) 7→

{
0 if x = y,

1 if x 6= y
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is a metric space.

1.3 Balls and spheres

Let (S, d) be a metric space, a ∈ S a point, r a positive real number. Then
the sets

Br(a) = {x ∈ S | d(a, x) < r }, (1)

Dr(a) = {x ∈ S | d(a, x) ≤ r }, (2)

Sr(a) = {x ∈ S | d(a, x) = r } (3)

are called, respectively, the open ball , closed ball (or disk), and sphere of the
space (S, d) with center a and radius r.

In R, an open ball is an open interval, in R2 an open ball is an open disk
(bounded by a circle), in R3 an open ball is what we usually call open ball.

1.4 Neighborhoods

Let S be a metric space with metric d, let p ∈ S. A set N ⊂ S is called a
neighborhood of p if it contains some open ball with center p. In other words,
N is a neighborhood of p if there exists r ∈ R+ such that Br(p) ⊂ N .

1.5 Digression:
an easy definition of continuous functions

The notion of neighborhood is very handy. For example, the famous epsilon-
delta definition for continuity of a function becomes very simple: a function
f is continuous at a point p if for any neighborhood N of f(p) the preimage
f−1(N) = {x | f(x) ∈ N} is a neighborhood of p.

This definition for a function f : R→ R is really equivalent to the epsilon-
delta definition, but it looks more conceptual. It contains only one quantifier,
while the epsilon-delta definition contains three. As we will see, it works far
beyond the environment of functions R→ R.

Here is how it works for maps between metric spaces. The definition stays
the same: a map f : X → Y between metric spaces X and Y is continuous at a
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point p if the preimage f−1(N) of any neighborhood N of f(p) is a neighborhood
of p.

Theorem 1.1. Let X and Y be two metric spaces. A map f : X → Y is
continuous at a point a ∈ X iff each ball centered at f(a) contains the image
of some ball centered at a.

Proof. Let as assume that f is continuous at a point a ∈ X. Let Bε(f(a))
be a ball centered at f(a). As an open set, it is a neighborhood of f(a) in Y .
By local continuity of f at a, its preimage f−1Bε(f(a)) is a neighborhood of
a. Hence, there exists a ball Bδ(a) ⊂ f−1Bε(f(a)). Applying f to both sides
of this inclusion formula, we obtain f(Bδ(a)) ⊂ Bε(f(a)).

Let us assume that each ball Bε(f(a)) contains the image of a ball Bδ(a)
and prove that then f is continuous at a. Let N be a neighborhood of f(a).
In a metric space Y this means that there exists a ball Bε(f(a)) ⊂ N . By
our assumption, Bε(f(a)) contains the image of some ball Bδ(a). Therefore,
f−1(N) ⊃ Bδ(a) is a neighborhood of a.

Theorem 1.2. Let X and Y be metric spaces. A map f : X → Y is
continuous at a point a ∈ X iff for every ε > 0 there exists δ > 0 such that
for every point x ∈ X the inequality ρ(x, a) < δ implies ρ

(
f(x), f(a)

)
< ε.

Proof. The condition “for every point x ∈ X the inequality ρ(x, a) < δ
implies ρ (f(x), f(a)) < ε” means that f(Bδ(a)) ⊂ Bε(f(a)). Now, apply the
preceding Theorem 1.1.

1.6 Properties of neighborhoods

A neighborhood of p is a set which includes all points that are sufficiently
close to p. Therefore the following two properties seem natural:

1. The intersection of any two neighborhoods of p is a neighborhood of p.

2. Any set which contains a neighborhood of p is a neighborhood of p.

It would be natural also to expect that a neighborhood is shared by neighbors.
In other words, a neighborhood N of a point p is a neighborhood for points suffi-
ciently close to p. “Sufficiently close” means “belonging to a neighborhood”.
This time it is probably a new neighborhood, more narrow neighborhood,
because the original one could contain quite remote points. Therefore the
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statement: “a neighborhood is shared by neighbors” is transformed to a more
complicated and formal statement:

3. For any neighborhood N of p there is a neighborhood M ⊂ N such that
N is a neighborhood of each q ∈M .

If N contains an open ball B with center p, then B is a neighborhood of p
and N is a neighborhood for each point of B.

Most arguments in which neighborhoods appear are based on the prop-
erties 1-3 above. A reasonable notion of neighborhood can be extended to
situations without distances. The three properties stated above hold true in
all these situations and inspire to use the same intuition and terminology.

2 Neighborhood spaces

2.1 Axioms for neighborhoods

Let S be a set, let for each p ∈ S a collection Np of subsets of S is fixed, and
these collections satisfy the following requirements:

AxN1 Np is not empty for any p ∈ S;

AxN2 p ∈ U for each U ∈ Np;
AxN3 if U ∈ Np and U ⊂ V , then V ∈ Np;
AxN4 if U, V ∈ Np, then U ∩ V ∈ Np;
AxN5 for any U ∈ Np there exists V ∈ Np such that U ∈ Nq for any q ∈ V .

Observe that in the requirement 5 we have V ⊂ U , since U ∈ Nb implies
b ∈ U by the first requirement, hence any b ∈ V belongs to U .

Denote by N the family {Np | p ∈ S} of all Np. Then

• the pair (S,N ) (i.e., the set S equipped with the collections Np for
each p ∈ S) is called a neighborhood space,

• elements of S are called its points,

• each U ∈ Np is called a neighborhood of p in this neighborhood space,

• N is called a neighborhood structure in S.

• The requirements AxN1 – AxN5 are called the axioms of neighborhood
structure.
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Let us reformulate the axioms of neighborhood structure using these new
words wherever possible.

AxN1 Each point has a neighborhood.

AxN2 A point is contained in each of its neighborhoods.

AxN3 Any set which contains a neighborhood of a point is also a neigh-
borhood of the point.

AxN4 The intersection of two neighborhoods of a point is a neighborhood
of the point.

AxN5 Each neighborhood U of a point p contains a neighborhood V of p
such that U is a neighborhood for each point of V .

AxN1 and AxN2 imply that the whole set S is a neighborhood for each
point.

AxN5 can be restated also as follows:

Each neighborhood U of a point p is shared by all the points of some
neighborhood V of p.

2.2 Relation to metric spaces

Any metric space provides an example of a neighborhood space, because
neighborhoods of points in a metric space satisfy AxN1 – AxN5.

Different metrics on the same set may define the same neighborhoods.
This is what happens, for example, if the balls are the same although the
metrics differ. This is the case if one of the metrics is obtained from the
other one as a result of multiplication by a positive real number.

Metrics may differ more substantially, but still define the same neighbor-
hood structure. If for any point p any ball defined by one of the metrics
contains a ball defined by the other metric and vice versa, then the neigh-
borhood structures coincide.

For example, on the plain R2 the Euclidean metric

d((a1, a2), (b1, b2)) =
√

(a1 − b1)2 + (a2 − b2)2,

the “Manhattan metric”

dManhattan((a1, a2), (b1, b2)) = |a1 − b1|+ |a2 − b2|
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and
dmax((a1, a2), (b1, b2)) = max(|a1 − b1|, |a2 − b2|)

define the same neighborhood structure. To realize how different these met-
rics are and why their neighborhood structures coincide, I recommend to
figure out what spheres and balls they define.

Some neighborhood structures cannot be obtained from any metric. For
example, if S consists of two points, a and b, then Na = Nb = S satisfy all
the requirements, but cannot be obtained from any metric on S, because for
any metric d on S the ball Bd(a,b)(a) = {a} is a neighborhood of a, that is
{a} ∈ Na, and Na 6= S = {a, b}.

Thus, under the transition from metric spaces to neighborhood spaces
some information is forgotten, and, on the other hand, new spaces appeared
(since not all neighborhood spaces can be obtained from metric ones). We
ignore some information encoded in a metric (which is unessential for a wide
range of problems) and consider a larger scope of objects.

2.3 Intermediate recapitulation

This is a typical success story about a development of an abstract math-
ematical notion. The notion of neighborhood structure that we came to
is equivalent to the notion of topological space - one of the most profound
notions of modern mathematics.

At this level of knowledge, we could not yet see and appreciate the most
important achievement of the transition. The new objects (neighborhood
spaces) are more flexible than the initial ones (metric spaces). With the new
ones one can do many operations (e.g., so called “cut and paste” operations),
which are impossible, or, at least, unnatural and difficult to perform, with
the old ones.

Of course, this is not an account of the real story. The transition was not
performed in a single stroke. I just presented a plausible motivation for the
notion of topological space. Usually this notion appears dogmatically in a
final form, which emerges mysteriously from a thin air.

In the story above, an important final stage is still missing. Although the
notion of neighborhood structure is quite intuitive and motivated, it is too
cumbersome to be convenient. In order to describe a specific neighborhood
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structure literally, one has to care about the set of all neighborhoods for each
point. The structure can be easily recovered from other equivalent, but more
concise structures. Limits of point sequences, closures of sets, open sets,
etc. are defined in terms of neighborhoods and can be used for recovering
neighborhoods. Hence, the neighborhood structure can be defined in terms
of any of these notions. Which of them are better suited for defining the
neighborhood structure is a highly non-trivial question. The choice was not
straightforward and took a long time. But nowadays it is commonly accepted
to define the structure of topological space on basis of the notion of open set.

In the next section the modern definition of topological space, which is
based on open sets, is presented. Then we will prove that a topological space
is nothing but a neighborhood space.

3 Topological spaces

3.1 Topological structure

Let S be a set. Let Ω be a collection of its subsets such that:

AxT1 The union of any collection of elements of Ω belongs to Ω.

AxT2 The intersection of any finite set of elements of Ω belongs to Ω.

AxT3 The empty set ∅ and the whole S belong to Ω.

Then

• Ω is called a topological structure or just a topology on S;

• the pair (S,Ω) is called a topological space;

• elements of S are called points of this topological space;

• elements of Ω are called open sets of the topological space (S,Ω);

• the conditions in the definition above are called the axioms of topological
structure.

Let us reformulate the axioms of topological structure using the words
open set wherever possible.

AxT1 The union of any collection of open sets is open.

AxT2 The intersection of any finite collection of open sets is open.
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AxT3 The empty set and the whole space are open.

3.2 Neighborhoods in a topological space

In a topological space (S,Ω), a neighborhood of a point p is defined as a
set which contains the point p together with some open set that contains
p. In formulas: N is a neighborhood of p if there exists U ∈ Ω such that
p ∈ U ⊂ N .

Observe that, according to this definition, an open set is a neighborhood
of each of its points.

Theorem 3.1. The set of neighborhoods in a topological space satisfies all
the axioms for neighborhood structure.

Proof. AxN1 (each point has a neighborhood). Indeed, the whole S is open
by AxT3. Therefore S is a neighborhood for every point.

AxN2 (a point is contained in each of its neighborhoods). It follows im-
mediately from the definition of neighborhood.

AxN3 (any set containing a neighborhood of a point is also its neighbor-
hood). Also, it follows immediately from the definition: if N is a neighbor-
hood of p, then there exists an open set U such that p ∈ U ⊂ N , and if
M ⊃ N , then p ∈ U ⊂M .

AxN4 (the intersection of two neighborhoods of a point is a neighborhood
of the point). Let N and M be neighborhoods of p. Then there exist open
sets U and V such that p ∈ U ⊂ N and p ∈ V ⊂M . Then U ∩ V is open by
AxT2, and p ∈ U ∩ V ⊂ N ∩M .

AxN5 (each neighborhood U of a point p contains a neighborhood V
of p such that U is a neighborhood for each point of V ). Since U is a
neighborhood of p, there exists an open set W such that p ∈ W ⊂ U . This
set is a neighborhood of each of its points. Hence W can be taken as V .

Denote the neighborhood structure defined by a topological structure Ω
by N (Ω). Thus each topological space (S,Ω) converts into a neighborhood
space (S,N (Ω)).
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3.3 Open sets in a neighborhood space

Let us return to neighborhood spaces. In a neighborhood space, a set which
is a neighborhood of any of its points is called open. In other words, U is
open if U ∈ Np for each p ∈ U .

In a metric space this definition is applicable, too, as any metric space is
a neighborhood space. In a metric space this definition looks as follows: a
set is open in a metric space if, together with any of its points, it contains an
open ball centered at this point.

Theorem 3.2. In a neighborhood space the set of all open sets (defined by the
neighborhood structure as above) satisfies the axioms of topological structure.

Proof. Let us begin with AxT3. As it was observed above, the set of all the
points of a neighborhood space is a neighborhood of each point. Thus, this
set is open. On the other hand, the empty set is open: it has no point, hence
it is a neighborhood for any of them.

AxT1 (the union of any collection of open sets is open). This follows from
AxN3. Indeed, each point of a union of open sets belongs to one of the open
sets that are united, this open set is its neighborhood, and hence the whole
union, as a larger set, is its neighborhood by AxN3.

AxT2 (the intersection of any two open sets is open). This follows obvi-
ously from the AxN4.

Denote the topological structure defined by a neighborhood structure N
by Ω(N ). Thus each neighborhood space (S,N ) turns into a topological
space (S,Ω(N )).

Notice that the last axiom of neighborhood structure AxN5 was not used
in the proof above. It is also needed, but its role is more delicate.

Theorem 3.3. In the topological space that is built as above out of a neigh-
borhood space, the neighborhoods coincide with the neighborhoods of the initial
neighborhood space. In formula: N (Ω(N )) = N .

Proof. Let (S,N ) be a neighborhood space. Let us prove first the inclusion
N (Ω(N )) ⊂ N . Let V ∈ Np(Ω(N )), in words: let V be a neighborhood
of p ∈ S in the sense of definition for neighborhoods in a topological space
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(X,Ω(N )). By this definition, there exists an open set U ∈ Ω(N )) such that
p ∈ U ⊂ V . By the definition of topological structure Ω(N ), the set U is a
neighborhood of each of its points (in the original neighborhood space). In
formula: U ∈ Nq for any q ∈ U . Since V ⊃ U , V ∈ Nq by AxN3 for each
q ∈ U . In particular, V ∈ Np, that is V a neighborhood of p which belongs
to the original neighborhood structure N .

Conversely, let V ∈ Np. Let U is the set of points q such that V ∈ Nq.
Observe that p ∈ U because V is a neighborhood of p. Further, U ⊂ V
since V is a neighborhood for each point of U . Therefore by AxN5 for each
q ∈ U there exists a neighborhood W of q such that V is a neighborhood for
each point of W . Hence W ⊂ U . Thus, each point of U has a neighborhood
contained in U . Hence U is open, that is U ∈ Ω(N ) and hence V is a
neighborhood in the sense of definition for neighborhoods in the topological
space (S,Ω(N )). In formula, V ∈ N (Ω(N )).

Theorem 3.4. Ω(N (Ω)) = Ω.

Proof. Let (S,Ω) be a topological space, U ∈ Ω. Then U is a neighborhood
of each of its point, i.e., U ∈ Np(Ω) for each p ∈ U . Therefore, U is open in
the topological structure defined by the neighborhood structure N (Ω), that
is U ∈ Ω(N (Ω)). Thus Ω ⊂ Ω(N (Ω)).

Conversely, let U ∈ Ω(N (Ω)). Then U ∈ Np(Ω) for each p ∈ U . This
means that there exists Vp ∈ Ω such that p ∈ Vp ⊂ U . Then U = ∪p∈UVp. By
AxT1, U belongs to Ω as the union of sets Vp ∈ Ω. Thus Ω(N (Ω)) ⊂ Ω.

Theorems 3.3 and 3.4 imply that the mapsN 7→ Ω(N ) and Ω 7→ N (Ω) are
inverse to each other. So, neighborhood structures and topological structures
on the same set are in bijective correspondence to each other.

4 Continuous maps

4.1 Definition and basic properties

Let X and Y be topological spaces. A map f : X → Y is said to be continuous
if the preimage of each open subset of Y is an open subset of X.
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Recall again that the preimage of a subset B ⊂ Y under a map f : X → Y
is {a ∈ X | f(a) ∈ B} (in words: this is the set of all the elements of X
which are mapped by f to elements of B). The preimage of B under f is
denoted by f−1(B).

This is the global version of the notion of continuity at a point considered
above. We will study the relation between the global and local continuities
later.

Theorem 4.1. A map is continuous iff the preimage of each closed set is
closed.

Proof. Let f : X → Y be a map. If f : X → Y is continuous, then, for each
closed set F ⊂ Y , the set X r f−1(F ) = f−1(Y r F ) is open, and therefore
f−1(F ) is closed. To prove the converse statement, exchange the words open
and closed in the above argument.

Theorem 4.2. The identity map of any topological space is continuous.

Theorem 4.3. Any constant map (i.e., a map with one-point image) is
continuous.

Proof. The preimage of any set under a constant map either is empty or
coincides with the whole space.

Exercise 4.1. Let Ω1 and Ω2 be two topological structures in a space X.
Prove that the identity map

id : (X,Ω1)→ (X,Ω2)

is continuous iff Ω2 ⊂ Ω1.

Exercise 4.2. Let f : X → Y be a continuous map. Find out whether or not
it is continuous with respect to

1. a larger topology on X and the same topology on Y ,

2. a smaller topology on X and the same topology on Y ,

3. a larger topology on Y and the same topology on X,

4. a smaller topology on Y and the same topology on X.
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Exercise 4.3. Let X be a discrete space, Y an arbitrary space.
1) Which maps X → Y are continuous?
2) Which maps Y → X are continuous for each topology on Y ?

Exercise 4.4. Let X be an indiscrete space, Y an arbitrary space.
2) Which maps Y → X are continuous?
1) Which maps X → Y are continuous for each topology on Y ?

Theorem 4.4. Let A be a subspace of X. Then the inclusion in : A→ X is
continuous.

Proof. If a set U is open in X, then its preimage in−1(U) = U ∩A is open in
A by the definition of the induced topology.

Exercise 4.5. The topology ΩA induced on A ⊂ X by the topology of X is
the smallest topology on A with respect to which the inclusion in : A → X
is continuous.

Theorem 4.5. A composition of continuous maps is continuous.

Proof. Let f : X → Y and g : Y → Z be continuous maps. We must
show that for every U ⊂ Z that is open in Z its preimage (g ◦ f)−1(U) =
f−1(g−1(U)) is open in X. The set g−1(U) is open in Y by continuity of g.
In turn, its preimage f−1(g−1(U)) is open in X by the continuity of f .

Recall that the restriction of a map f : X → Y to A ⊂ X is the map
f |A : A→ Y defined by formula (f |A)(x) = x for x ∈ A.

Theorem 4.6. A restriction of a continuous map is continuous.

Proof. Let X, Y be topological spaces, f : X → Y be a continuous map and
A ⊂ X. Then (f |A)−1(V ) = f−1(V ) ∩ A.

4.2 Local Continuity

A map f from a topological space X to a topological space Y is said to be
continuous at a point a ∈ X if the preimage of every neighborhood of f(a) is
a neighborhood of a.

Thus, we come back to the definition which we discussed above in the
environment of metric spaces.
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Theorem 4.7. A map f : X → Y is continuous iff it is continuous at each
point of X.

Proof. Assume that f is continuous. Let us prove that f is continuous at
every a ∈ X. Let N be a neighborhood of f(a). By the definition of neigh-
borhood, it contains an open neighborhood: there exists an open set U such
that f(a) ∈ U ⊂ N . Then a ∈ f−1(U) ⊂ f−1(N). The set f−1(U) is open in
X, because U is open in Y and f is continuous. Thus f−1(N) contains open
set f−1(U) which contains a. Therefore f−1(N) is a neighborhood of a.

Now let us assume that f is continuous at every point a ∈ X and prove
that f is continuous. We must check that the preimage of each open set is
open. Let V ⊂ Y be an open set in Y . Take a ∈ f−1(V ). By continuity of
f at a, the set f−1(V ) is a neighborhood of a. Hence, there exists an open
set Ua such that a ∈ Ua ⊂ f−1(V ). Take such Ua for each a ∈ f−1(V ) and
unite all of them. The union U = ∪a∈f−1(V )Ua is an open set (as a union of
open sets), it is contained in f−1(V ) as each Ua is contained, and it contains
f−1(V ), as each a ∈ f−1(V ) belongs to its Ua. Thus f−1(V ) = U and is an
open set.
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