Advanced Linear Algebra MAT 315

Oleg Viro

02/23/2021

Solutions for midterm 1. Problem 4	2
Problem 5	
inear maps	4
Linear maps	5
Examples of linear maps	
Examples of linear maps	
A linear map takes 0 to 0	
Linear operations in $\mathcal{L}(V,W)$	
Composition.	
anguage of categories	11
Categories	12
Examples of categories	
Operators	
Inverses and invertibles	
Isomorphism in a category	16
Invertible map = bijection	
Spaces associated to a linear map	18
Null space	19
Null space is a subspace	
Injectivity and the null space	
Range	
Surjectivity and range	
Inverse to a linear man is linear	0.4

Solutions for midterm 1. Problem 4

Problem 4. Let F be a field and S be a subset of F.

(a) Prove that among subfields $K \subset F$ such that $S \subset K$, there exists the smallest one, K_0 .

Proof. In Lecture 2, in the proof of existence of a prime subfield in any field,

there is Lemma according to which

the intersection of any collection of subfields in a field F is a subfield of F.

Hence, the intersection of all subfields $K \subset F$ such that $S \subset K$ is a subfield of F.

This subfield is contained in any subfield $K \subset F$ such that $S \subset K$.

Thus it is the smallest of those K's.

(b) Find a necessary condition for finiteness of this minimal subfield K_0 .

Solution. Here are two necessary conditions.

- (1) If K_0 is finite, then $S \subset K_0$ must be finite.
- (2) If K_0 is finite, then the characteristic of F is not 0.

Indeed, the prime subfield of F must be finite, and this happens iff the characteristic of F is 0.

2 / 24

Problem 5

Problem 5. Let $\mathbb F$ be a field and $\varphi\colon \mathbb F\to \mathbb F$ be a field homomorphism.

(a) Is φ a linear map $\mathbb{F}^1 \to \mathbb{F}^1$? Justify your answer.

Solution. No, unless $\varphi = id$. Indeed, if $\varphi \neq id$, then there exists α such that $\varphi(\alpha) \neq \alpha$. Since φ is a field homomorphism, then

$$\varphi((\alpha)) = \varphi((\alpha \cdot 1)) = (\varphi(\alpha \cdot 1)) = (\varphi(\alpha) \cdot \varphi(1)) = (\varphi(\alpha) \cdot 1) = (\varphi(\alpha))$$

On the other hand, if φ was a linear map, we would have

$$\varphi((\alpha)) = \varphi((\alpha \cdot 1)) = \varphi(\alpha(1)) = \alpha(\varphi(1)) = \alpha(1) = (\alpha).$$

Therefore $\varphi(\alpha) = \alpha$, but this contradicts to the assumption that $\varphi(\alpha) \neq \alpha$.

(b) Give an example of a field homomorphism $\varphi \colon \mathbb{F} \to \mathbb{F}$ such that $\varphi \neq \mathrm{id}_{\mathbb{F}}$ for some field \mathbb{F} .

Solution. $\mathbb{F}=\mathbb{C}$, and φ is a complex conjugation $x+iy\mapsto x-iy$, which is a field homomorphism, see handout of Lecture 2.

Linear maps 4 / 24

Linear maps

Let V and W be vector spaces over a field $\mathbb F$.

```
Definition A map T:V\to W is said to be linear if: T(u+v)=Tu+Tv \text{ for all } u,v\in V \tag{$T$ is additive)};
```

 $T(\lambda v) = \lambda(Tv)$ for all $\lambda \in \mathbb{F}$ and all $v \in V$ (T is homogeneous).

Linear maps or linear transformations? Tv or T(v)?

Notation $\mathcal{L}(V,W) = \{ \text{all the linear maps } V \to W \}$

Other notations: $\operatorname{Hom}_{\mathbb{F}}(V,W)$ or $\operatorname{Hom}(V,W)$.

5 / 24

Examples of linear maps

Zero $0 \in \mathcal{L}(V, W) : x \mapsto 0$

Identity $I \in \mathcal{L}(V,V): x \mapsto x$ Other notations: id, or id_V, or 1.

Inclusion in $\in \mathcal{L}(V, W) : x \mapsto x$ if $V \subset W$

Examples of linear maps

```
Differentiation \mathbb{R}[x] \to \mathbb{R}[x]: p(x) \mapsto \frac{dp}{dx}(x). Integration \mathbb{R}[x] \to \mathbb{R}: p(x) \mapsto \int_0^1 p(x) dx. Multiplication by a polynomial q(x) T: \mathbb{F}[x] \to \mathbb{F}[x]: Tp(x) = q(x)p(x). Backward shift T \in \mathcal{L}(\mathbb{F}^\infty, \mathbb{F}^\infty): T(x_1, x_2, x_3, \dots) = (x_2, x_3, x_4, \dots) Forward shift T \in \mathcal{L}(\mathbb{F}^\infty, \mathbb{F}^\infty): T(x_1, x_2, x_3, \dots) = (0, x_1, x_2, \dots)
```

7 / 24

A linear map takes 0 to 0

Theorem. Let $T: V \to W$ be a linear map. Then T(0) = 0.

Proof. T(0) = T(0+0) = T(0) + T(0).

So, T(0) = T(0) + T(0).

Add -T(0) to both sides.

0 = T(0).

8 / 24

```
Linear operations in \mathcal{L}(V,W)

Definition Let S,T:V\to W be maps and \lambda\in\mathbb{F}.

The sum S+T and the product \lambda T are maps V\to W defined by (S+T)(v)=Sv+Tv and (\lambda T)(v)=\lambda(Tv) for all v\in V.

Theorem. If S,T are linear maps, then S+T and \lambda T are linear maps.

Proof. Exercise! It's easy! \Box
Theorem With the operations of addition and scalar multiplication, \mathcal{L}(V,W) is a vector space.

Proof. Exercise! It's easy! \Box
Special case: W=\mathbb{F}. Then \mathcal{L}(V,W)=\mathcal{L}(V,\mathbb{F}) is called the dual space and is denoted by V'. Elements of V' are linear maps V\to\mathbb{F}. They are called linear functionals or covectors.
```

9 / 24

```
Composition
 Definition (should be well known). Let T:U\to V and S:V\to W be maps.
  The composition S \circ T is a map U \to W defined by formula
            (S \circ T)(u) = S(T(u)) for all u \in U.
Diagramatic presentation: U \xrightarrow{T} V \xrightarrow{S} W
Composition is also called a product.
                                               (Say, in Axler's textbook.)
Often S \circ T is denoted by ST, like a product.
 Theorem.
                 If S and T are linear maps, then S \circ T is a linear map.
Proof. Exercise!
                      It's easy!
                                                                                                                 Properties of composition.
 associativity
                                                     (T_1T_2)T_3 = T_1(T_2T_3).
                                                    T \operatorname{id}_V = T = \operatorname{id}_W T.
 identity
 distributivity
                   (S_1 + S_2)T = S_1T + S_2T and (T_1 + T_2)S = T_1S + T_2S.
                                                (\lambda S)T = \lambda(ST) = S(\lambda T).
 homogeneity
```

Categories

A category provides a convenient language to speak about

objects of unspecified nature, but **related** to each other **in a very specific way**. A **category** consists of: **objects** and

morphisms: for any two objects X,Y morphisms $X \to Y$, and

compositions of morphisms: $X \xrightarrow{f} Y \xrightarrow{g} Z$

The composition is **associative**: $h \circ (g \circ f) = (h \circ g) \circ f$ $A \xrightarrow{f} B \xrightarrow{g \circ f} C \xrightarrow{h \circ (g \circ f)} D$

With any object X , the **identity morphism** $\mathrm{id}_X:X\to X$ is associated:

 $\text{for} \quad A \xrightarrow{f} X \xrightarrow{\operatorname{id}_X} X \quad \text{we have } \operatorname{id}_X \circ f = f$

and for $X \xrightarrow{\operatorname{id}_X} X \xrightarrow{g} B$ we have $g \circ \operatorname{id}_X = g$.

12 / 24

Examples of categories

Example 1. The category of sets.

Objects are sets, morphisms are maps, compositions are compositions of maps.

Example 2. The category of vector spaces over a field \mathbb{F} .

Objects are vector spaces over $\ \mathbb{F}$, morphisms are linear maps, compositions are compositions of linear maps.

Example 3. The category of linear maps. Let \mathbb{F} be a field.

Objects are linear maps V o W , where V and W are vector spaces over ${\mathbb F}$.

A morphism $(V \xrightarrow{T} W) \to (X \xrightarrow{S} Y)$ is a pair $(V \xrightarrow{L} X, W \xrightarrow{M} Y)$ of linear maps such that $M \circ T = S \circ L$.

It is presented by a diagram: $\begin{array}{c} V \xrightarrow{L} X \\ \downarrow_T & S \\ W \xrightarrow{M} Y \end{array}$ which is **commutative**: $M \circ T = S \circ L$. Composition:

$$\begin{pmatrix} A \xleftarrow{N} X \\ \downarrow U & S \downarrow \\ B \xleftarrow{R} Y \end{pmatrix} \circ \begin{pmatrix} X \xleftarrow{L} V \\ \downarrow S & T \downarrow \\ Y \xleftarrow{M} W \end{pmatrix} = \begin{pmatrix} A \xleftarrow{N \circ L} V \\ \downarrow U & T \downarrow \\ B \xleftarrow{R \circ M} W \end{pmatrix}$$

Operators

Definition A linear map from a vector space to itself is called an **operator**.

Notation $\mathcal{L}(V) = \{ \text{all linear maps } V \to V \} = \mathcal{L}(V, V).$

Category of operators in vectors spaces over a field ${\mathbb F}$

objects are operators T:V o V ,

a morphism $(V \xrightarrow{T} V) \rightarrow (W \xrightarrow{S} W)$

is a linear map $V \xrightarrow{L} W$ such that $S \circ L = L \circ T$.

or, rather, a commutative diagram $\begin{matrix} V & \stackrel{L}{\longrightarrow} W \\ \downarrow_T & \downarrow_S \\ V & \stackrel{L}{\longrightarrow} W \end{matrix}$,

a composition of morphisms is the composition of the linear maps.

Axler: "The deepest and most important parts of linear algebra ... deal with operators."

14 / 24

Inverses and invertibles

In any category:

Definition

Morphisms $T:V\to W$ and $S:W\to V$ are said to be **inverse** to each other

if
$$S \circ T = \mathrm{id}_V$$
 and $T \circ S = \mathrm{id}_W$.

A morphism $T:V \to W$ is called **invertible** if there exists a morphism inverse to T .

Uniqueness of Inverse. An morphism inverse to an invertible morphism is unique.

Proof Let S_1 and S_2 be inverse to $T:V\to W$. Then

$$S_1 = S_1 \operatorname{id}_W = S_1(TS_2) = (S_1T)S_2 = \operatorname{id}_V S_2 = S_2$$

Notation If T is invertible, then its inverse is denoted by T^{-1} .

For a morphism $T:V \to W$, the inverse morphism T^{-1} is defined by two properties:

$$TT^{-1} = \mathrm{id}_W$$
 and $T^{-1}T = \mathrm{id}_V$.

15 / 24

Isomorphism in a category

Definition. An invertible morphism is called an **isomorphism**.

Objects V and W are called **isomorphic** if \exists an isomorphism $V \to W$.

Properties of isomorphisms

- An identity morphism is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.

It is reflexive, symmetric and transitive.

A category does not recognize any difference between its isomorphic objects, although the objects may be not identically the same.

16 / 24

Invertible map = bijection

Which sets are isomorphic in the category of sets and maps?

Theorem. Invertibility is equivalent to bijectivity.

You should know this. If not, see the textbook, page 81.

Null space

```
Definition (reminder) For T\in\mathcal{L}(V,W), the null space of T is null T=T^{-1}\{0\}=\{v\in V\mid Tv=0\}.
```

Another name: **kernel**. Notation: $\operatorname{Ker} T$.

Examples

- $\bullet \quad \text{For} \ T:V\to W:v\mapsto 0\,, \qquad \qquad \text{null}\, T=V$
- For differentiation $D:\mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, $\operatorname{null} D = \{\operatorname{constants}\}$
- ullet For multiplication by x^3 $T:\mathcal{P}(\mathbb{F}) o \mathcal{P}(\mathbb{F}): Tp=x^3p(x)$, $\mathrm{null}\, T=0$
- For backward shift $T \in \mathcal{L}(\mathbb{F}^{\infty}, F^{\infty}) : T(x_1, x_2, x_3, \dots) = (x_2, x_3, x_4, \dots)$ $\operatorname{null} T = \{(a, 0, 0, \dots) \mid a \in \mathbb{F}\}$

19 / 24

Null space is a subspace

```
Theorem. For T \in \mathcal{L}(V, W), \operatorname{null} T is a subspace of V.
```

```
Proof. As we know T(0) = 0. Hence 0 \in \text{null } T.
```

```
\begin{aligned} u,v \in \operatorname{null} T & \Longrightarrow T(u+v) = T(u) + T(v) = 0 + 0 = 0 & \Longrightarrow u+v \in \operatorname{null} T \,. \\ u \in \operatorname{null} T, \lambda \in \mathbb{F} & \Longrightarrow T(\lambda u) = \lambda T u = \lambda 0 = 0 & \Longrightarrow \lambda u \in \operatorname{null} T \,. \end{aligned}
```

20 / 24

Injectivity and the null space Definition (reminder). A map $T: V \to W$ is called injective if $Tu = Tv \implies u = v$. A map $T: V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$. T is injective $\iff \text{null } T = \{0\}$. Proof $\implies \text{Recall } 0 \in \text{null } T$. If $\text{null } T \neq \{0\}$, then $\exists v \in \text{null } T$, $v \neq 0$. So, Tv = T0 = 0 and T is not injective.

Hence $u - v \in \operatorname{null} T = \{0\} \implies u = v$.

21 / 24

Range

Definition.

For a map $T: V \to W$, the **range** of T is $\operatorname{range} T = T(V) = \{Tv \mid v \in V\}$.

Another name: **image**. Notation: $\operatorname{Im} T$.

Examples

• For $T: V \to W: v \mapsto 0$, range $T = \{0\}$.

 \longleftarrow Let $u, v \in V$, Tu = Tv. Then 0 = Tu - Tv = T(u - v).

- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, $\operatorname{range} D = \mathcal{P}(\mathbb{R})$.
- For multiplication by x^3 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F}): Tp = x^3p(x)$, range T= polynomials without monomials of degree <3.

Surjectivity and range

Definition (reminder).

A map $T: V \to W$ is called **surjective** if range T = W.

The range of a linear map is a subspace.

For $T \in \mathcal{L}(V, W)$, range T is a subspace of W.

Proof $0 \in \operatorname{range} T$, since T(0) = 0.

If $w \in \operatorname{range} T$ and $\lambda \in \mathbb{F}$, then $\exists v \in V : w = Tv$, $T(\lambda v) = \lambda Tv = \lambda w \in \operatorname{range} T$.

 $w_1, w_2 \in \operatorname{range} T \implies \exists v_1, v_2 \in V : w_1 = Tv_1, w_2 = Tv_2$ $\implies w_1 + w_2 = Tv_1 + Tv_2 = T(v_1 + v_2)$

 $\implies w_1 + w_2 = Tv_1 + Tv_2 = T(v_1 + v_2) \in \text{range } T.$

23 / 24

Inverse to a linear map is linear

Theorem If V and W are vector spaces and a linear map $T:V\to W$ is invertible, then T^{-1} is linear.

This means that a morphism in the category vector spaces is isomorphism

 \iff it is an isomorphism in the category of sets.

Proof. Additivity. Let $w_1, w_2 \in W$. Then

$$T^{-1}(w_1 + w_2) = T^{-1}(\mathrm{id}_W w_1 + \mathrm{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$$

= $T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \mathrm{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$

Proof. Homogeneity.

$$T^{-1}(\lambda w) = T^{-1}(\lambda \operatorname{id}_W w) = T^{-1}(\lambda T T^{-1} w) = T^{-1}(\lambda T (T^{-1} w))$$
$$= T^{-1}T(\lambda T^{-1} w) = \operatorname{id}_V(\lambda T^{-1} w) = \lambda T^{-1} w.$$

Corollary 1 A linear map $T:V\to W$ is an isomorphism in the category of vector spaces, if and only if it is bijective.

Corollary 2 A linear map $T:V\to W$ is an isomorphism in the category of vector spaces, if and only if $\operatorname{null} T=0$ and $\operatorname{range} T=W$.

24 / 24