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Solutions for midterm 1. Problem 4

Problem 4. Let F' be a field and S be a subset of F.
(a) Prove that among subfields K C F such that S C K, there exists the smallest one, K.

Proof. In Lecture 2, in the proof of existence of a prime subfield in any field,
there is Lemma according to which

the intersection of any collection of subfields in a field F' is a subfield of F'.
Hence, the intersection of all subfields K C F' such that S C K is a subfield of F.
This subfield is contained in any subfield K C F such that S C K.

Thus it is the smallest of those K's. 0
(b) Find a necessary condition for finiteness of this minimal subfield K.
Solution. Here are two necessary conditions.
(1) If Ky is finite, then S C Ky must be finite.
(2) If Ky is finite, then the characteristic of F is not 0.
Indeed, the prime subfield of F' must be finite, and this happens iff the characteristic of F is 0.
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Problem 5
Problem 5. Let F be a field and ¢: F — F be a field homomorphism.
(a) Is ¢ a linear map F! — F'? Justify your answer.
Solution. No, unless ¢ = id. Indeed, if ¢ # id, then there exists « such that ¢(«) # «. Since ¢ is a field
homomorphism, then
p((@) = ¢((a-1)) = (p(a- 1)) = (p(a) - ¢(1)) = (p(a) - 1) = (p(a))
On the other hand, if ¢ was a linear map, we would have
p((a) = e((a- 1)) = pla(l) = ale(1)) = a(l) = ().
Therefore p(«) = @, but this contradicts to the assumption that ¢(«) # a.
(b) Give an example of a field homomorphism ¢: F — F such that ¢ # idy for some field F.
Solution. F = C, and ¢ is a complex conjugation = + iy — x — iy, which is a field homomorphism, see
handout of Lecture 2.
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Linear maps
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Linear maps
Let V and W be vector spaces over a field F.

Definition A map T :V — W s said to be linear if:

T(u+v)=Tu+Tv for all u,v eV (T is additive);
T(A) = A(Tw) forall A€F andall veV (T is homogeneous).
Linear maps or linear transformations? Tv or T(v)?

Notation  L(V,W) = {all the linear maps V' — W}

Other notations: Homp(V, W) or Hom(V,W).
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Examples of linear maps
Zero 0eL(V,W):z—0
Identity ITeLV,V):z—a Other notations: id, or idy, or 1.
Inclusion me LV,W):z—az if VCW
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Examples of linear maps

Differentiation R[z] — R[z] : p(x) — 2 (z).

dx

Integration R[z] — R : p(z) [01 p(x)dx .

Multiplication by a polynomial ¢(z) T :Flx] — Flx] : Tp(x) = q(x)p(z) .

Backward shift T' € L(F>®°,F>®) : T(x1,x2,23,...) = (X2, T3, Tq,...)

Forward shift T' € L(F>°,F>°) : T(x1, 22, x3,...) = (0,21, 22,...)
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A linear map takes 0 to 0
Theorem. Let T:V — W be a linear map. Then T'(0) = 0.
Proof. T(0)=T(0+0)=1T(0)+T(0).
So, T(0)=T(0)+ T(0).
Add —T(0) to both sides.
0="1(0). O
8 /24



Linear operations in L(V, V)

Definition Let S,T:V — W be mapsand A € F.
Thesum S+ T and the product AT are maps V — W defined by
(S+T)(v)=Sv+Tv and (AT)(v) = A(Tw) forall veV.

Theorem. If ST are linear maps, then S+ T and AT are linear maps.

Proof. Exercise! It's easy! ([

Theorem  With the operations of addition and scalar multiplication, £(V, W) is a vector space.
Proof. Exercise! It's easy! ([
Special case: W =TF. Then L(V,W) = L(V,F) is called the dual space and is denoted by V.
Elements of V' are linear maps V' — F. They are called linear functionals or covectors.
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Composition

Definition (should be well known). Let 7:U —V and S:V — W be maps.

The composition SoT isa map U — W defined by formula

(SoT)(u)=S(T(u)) forall ueU.
Diagramatic presentation: U-—Lsv S, w
SoT

Composition is also called a product. (Say, in Axler’s textbook.)
Often S oT is denoted by ST, like a product.

Theorem. If S and T are linear maps, then SoT is a linear map.
Proof. Exercise! It's easy! 0

Properties of composition.

associativity (TlTQ)Tg = T1 (T2T3) .

identity Tidy =T =idw T .

distributivity (S1 4+ 52)T = S1T + ST and (Th +T12)S =T1S + 1sS .

homogeneity (AS)T = A\(ST) = S(\T).
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Language of categories 11 /24

Categories

A category provides a convenient language to speak about

objects of unspecified nature, but related to each other in a very specific way. A category consists of:
objects and
morphisms: for any two objects X, Y morphisms X — Y, and

compositions of morphisms: x Ty 2.y
W
gof
The composition is associative: ho(go f) = (hog)of A 'l,p*3c—",p

With any object X, the identity morphism idx : X — X is associated:

for AL X 25 X we have idxof=f

~_s andfor X -, x 9. p we have goidy =g.
g
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Examples of categories

Example 1. The category of sets.
Objects are sets, morphisms are maps, compositions are compositions of maps.

Example 2. The category of vector spaces over a field F.
Objects are vector spaces over F, morphisms are linear maps,
compositions are compositions of linear maps.

Example 3. The category of linear maps. Let F be a field.
Objects are linear maps V' — W, where V' and W are vector spaces over F.

A morphism (V L W) — (X 5, Y) is a pair (V Lxow i Y) of linear maps such that M oT = So L.

\%4 — X
It is presented by a diagram: lT Sl which is commutative: M oT = S o L. Composition:
w2,y
A <T X X (T 14 A W 1%
lU Sl ° ls Tl = lU T
B R vy Y <M w B (oM
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Operators

Definition A linear map from a vector space to itself is called an operator.
Notation  £(V) ={all linear maps V — V} = L(V, V).

Category of operators in vectors spaces over a field F

objects are operators T : V — V|
a morphism (V L V)= (W LN W)
is a linear map V' Lo W suchthat SoL=LoT.
vV Lt w
or, rather, a commutative diagram lT Sl ,
vV Lt w
a composition of morphisms is the composition of the linear maps.

Axler: "The deepest and most important parts of linear algebra ... deal with operators.”
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Inverses and invertibles
In any category:
Definition
Morphisms T : V — W and S: W — V are said to be inverse to each other
if SoT =idy and T oS = idy .
A morphism T : V — W is called invertible if there exists a morphism inverse to 7.
Uniqueness of Inverse.  An morphism inverse to an invertible morphism is unique.
Proof Let S; and S beinverseto T:V — W . Then
S1 = S1idw = S1(T'S2) = (S17T)S2 = idy So = S 0
Notation If T is invertible, then its inverse is denoted by T—!.
For a morphism T : V — W, the inverse morphism T~! is defined by two properties:
TT ' =idy and T7'7T =idy.
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Isomorphism in a category

Definition. An invertible morphism is called an isomorphism.
Objects V' and W are called isomorphic if 3 an isomorphism V — W .

Properties of isomorphisms
e An identity morphism is an isomorphism.
e The composition of isomorphisms is an isomorphism.
e The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.
It is reflexive, symmetric and transitive.

A category does not recognize any difference between its isomorphic objects,
although the objects may be not identically the same.
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Invertible map = bijection
Which sets are isomorphic in the category of sets and maps?
Theorem. Invertibility is equivalent to bijectivity.
You should know this. If not, see the textbook, page 81.
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Spaces associated to a linear map
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Null space

Definition (reminder) For T € L£(V,W), the null space of T is
nllT =70} ={veV|Tv=0}.

Another name: kernel. Notation: KerT'.

Examples

e ForT:V->W:v—0, nulT =V

e For differentiation D : P(R) — P(R), null D = {constants}

e For multiplication by 2 T : P(F) — P(F) : Tp = 23p(z), null7 =0

e For backward shift T € L(F>®, F>°) : T(x1, 22,23, ...) = (X2, 23,24, ...)
null 7 = {(a,0,0,...) | a € F}
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Null space is a subspace

Theorem. For T'e€ L(V,W), nullT is a subspace of V.
Proof. As we know 7'(0) =0. Hence 0 € nullT".
v €nullT = T(u+v)=T(u)+TW)=0+0=0 = u+vecnllT.
vemllT,AeF = T(hu)=XNTu=X0=0 = AucnulT.
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Injectivity and the null space
Definition (reminder).
Amap T:V — W is called injective if Tu=Tv — u=wv.

Amap T:V — W isinjective <— u#v — Tu#Tv.

T is injective < nullT = {0} .

Proof
— Recall 0 €nullT. If nullT # {0}, then Fv € nullT, v #0.

So, Tv=T0=0 and T is not injective. O
— let u,veV, Tu=Tv. Then 0=Tu—Tv="T(u—v).

Hence u —v enullT = {0} = u=w. O
21 /24
Range
Definition.

Foramap T:V — W, the range of T is rangeT =T(V)={Tv|veV}.

Another name: image. Notation: Im7T .

Examples
o For T:V>W:v—0, rangeT = {0}.
e For differentiation D : P(R) — P(R), range D = P(R).

e For multiplication by 23 T : P(F) — P(F) : Tp = 23p(z),
range " = polynomials without monomials of degree < 3.

22 /24
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Surjectivity and range

Definition (reminder).
A map T:V — W is called surjective if rangeT =W .

The range of a linear map is a subspace.
For T'e L(V,W), rangeT is a subspace of W .

Proof 0 €rangeT, since T(0)=0.
If werangeT and A€ F, then v eV :w=Tv, T(\)=ATv=\w € rangeT .

wi,wy € rangel =—> Jvy,ve €V 1wy = Ty, wy = T
= wy +wy =Tvy + Tvy =T (v +v2) € rangeT. O
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Inverse to a linear map is linear

Theorem If V and W are vector spaces and a linear map 7' : V — W s invertible,
then T—! is linear.
This means that a morphism in the category vector spaces is isomorphism
<= it is an isomorphism in the category of sets.

Proof. Additivity. Let wi,ws € W . Then

T wy +wse) = T Hidw wy +idw we) = T HTT 1wy + TT 1wy)

= T7Y(T " wy + T wy) = idy (T twy + T we) = Ty + T 1w, .
Proof. Homogeneity.
T 'Ow) = T7'A\idww) = T7YATT 'w) = T-YAT(T~ w))

= T'TOTw) = idy(\NTtw) = \T"1w. O

Corollary 1 A linear map 7' : V — W is an isomorphism in the category of vector spaces, if and only if it
is bijective. (I

Corollary 2 A linear map 7 : V. — W is an isomorphism in the category of vector spaces, if and only if
null7” =0 and rangeT =W . ]
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