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Hence u € null A. So, nullA =0 and A is injective. m

Proof of Theorem. As we know, dim VY = dim V. Therefore
dim(VVY)Y =dim VY =dim V. We know that an injective linear map of a vector space
to a vector space of the same dimension is an isomorphism. u

In the proof of Lemma, we used the assumption that V' is finite-dimensional. Lemma
holds true without this assumption. For infinite-dimensional space it requires tools like
transfinite induction. But Theorem holds true only for a finite-dimensional V', anyway.
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