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Amap T :V — W s called linear, if

T(u1 —+ UQ) = Tuy + Tuy for Yuij,ug € V (additivity)
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The set of all linear maps V' — W is denoted by L(V,W).

Examples: 0 € L(V, V).
Identity map id € £(V,V) id(u) = u.
Differentiation R[z] — Rlz] : p :1:) ( ).

Integration R[z] — R : p(x) — fo d:z:

L(V,W) is a vector space.

8 /11



Linear Algebra
SUbspaces Lecture 1

9 /11



Linear Algebra
SUbspaces Lecture 1

Let V' be a vector space over IF and U C V.

9 /11



Linear Algebra
SUbspaces Lecture 1

Let V' be a vector space over IF and U C V.

Definition: subspace.
U is called a (vector or linear) subspace of V if U is a vector space
with the same addition and multiplication as on V.

9 /11



Linear Algebra
SUbspaces Lecture 1

Let V' be a vector space over IF and U C V.

Definition: subspace.
U is called a (vector or linear) subspace of V if U is a vector space
with the same addition and multiplication as on V.

A subset U of a vector space V is a subspace iff

9 /11



Linear Algebra
SUbspaces Lecture 1

Let V' be a vector space over IF and U C V.

Definition: subspace.
U is called a (vector or linear) subspace of V if U is a vector space
with the same addition and multiplication as on V.

A subset U of a vector space V is a subspace iff
0eU,

u+velU if uvelU,
AueU if A\éeéFand ueU.

9 /11



Linear Algebra
SUbspaces Lecture 1

Let V' be a vector space over IF and U C V.

Definition: subspace.
U is called a (vector or linear) subspace of V if U is a vector space
with the same addition and multiplication as on V.

A subset U of a vector space V is a subspace iff
0eU,

u+velU if uvelU,
AueU if A\éeéFand ueU.

Examples of subspaces.

9 /11



Linear Algebra
SUbspaces Lecture 1

Let V' be a vector space over IF and U C V.

Definition: subspace.
U is called a (vector or linear) subspace of V if U is a vector space
with the same addition and multiplication as on V.

A subset U of a vector space V is a subspace iff
0eU,

u+velU if uvelU,
AueU if A\éeéFand ueU.

Examples of subspaces. In R!

9 /11



Linear Algebra
SUbspaces Lecture 1

Let V' be a vector space over IF and U C V.

Definition: subspace.
U is called a (vector or linear) subspace of V if U is a vector space
with the same addition and multiplication as on V.

A subset U of a vector space V is a subspace iff
0eU,

u+velU if uvelU,
AueU if A\éeéFand ueU.

Examples of subspaces. In R', R?

9 /11



Linear Algebra
SUbspaces Lecture 1

Let V' be a vector space over IF and U C V.

Definition: subspace.
U is called a (vector or linear) subspace of V if U is a vector space
with the same addition and multiplication as on V.

A subset U of a vector space V is a subspace iff
0eU,

u+velU if uvelU,
AueU if A\éeéFand ueU.

Examples of subspaces. In R', R?, R3.

9 /11



Linear Algebra
SUbspaces Lecture 1

Let V' be a vector space over IF and U C V.

Definition: subspace.
U is called a (vector or linear) subspace of V if U is a vector space
with the same addition and multiplication as on V.

A subset U of a vector space V is a subspace iff
0eU,

u+velU if uvelU,
AueU if A\éeéFand ueU.

Examples of subspaces. In R', R?, R3.

Linear conditions: continuity

9 /11



Linear Algebra
SUbspaces Lecture 1

Let V' be a vector space over IF and U C V.

Definition: subspace.
U is called a (vector or linear) subspace of V if U is a vector space
with the same addition and multiplication as on V.

A subset U of a vector space V is a subspace iff
0eU,

u+velU if uvelU,
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Examples of subspaces. In R', R?, R3.

Linear conditions: continuity, differentiablity.
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Intersection and sums

Theorem. Intersection of any collection of subspaces is a subspace.

Definition: sum of subsets Let Uy, ...,U,, be subsets of a vector space V.

U+---+U :{u1+---+um\u1€U1,...,um€Um}

Theorem. If Uy,...,U,, are subspaces of a vector space V , then
Ui + -+ U, is the smallest subspace of V' containing Uy,...,U,,.
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Direct sums

Definition: direct sum
U +---+U,, is called a direct sum and is denoted by U; & --- @ U,, if each
u € Uy +---+ Uy, has a unique presentation as uj +- -+ +uy, with u; € U;.

Theorem. Let Uy,...U,, be subspacesof V. Then U;+---+U,, is a direct
sum iff there is only one way to represent 0 as uj + --- + u,, with u; € Uj .

Which way?

Special case: m = 2.
If U, W are subspaces of a vector space V', then
U+W=UeW iff UnW ={0}.
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