MAT 331-Fall 20: Project 3

In this project, you can use any code from the previous homeworks. The libraries you are allowed to use are:

1. The PIL library (to draw).
2. The math library.
3. The string library.
4. The cmath library

We fix a complex number $c \in \mathbb{C}$ and denote by $f_{c}(z)=z^{2}+c$. We recall that the filled Julia set $K\left(f_{c}\right)$ is the set

$$
K\left(f_{c}\right)=\left\{z_{0} \mid\left(z_{n}\right)_{n} \text { is bounded, where } z_{n+1}=f_{c}\left(z_{n}\right) \forall n\right\} .
$$

For simplicity, we shall denote by $f_{c}^{n}\left(z_{0}\right):=z_{n}$. We define the function $G_{c}: \mathbb{C} \rightarrow \mathbb{R}_{+}$as follows:

$$
\begin{gather*}
G_{c}(z)=\lim _{n \rightarrow+\infty} \frac{1}{2^{n}} \max \left(0, \log \left|f_{c}^{n}(z)\right|\right) \tag{1}\\
G_{c, n}(z)=\frac{1}{2^{n}} \max \left(0, \log \left|f_{c}^{n}(z)\right|\right) .
\end{gather*}
$$

The function G_{c} is called the Green function associated to f_{c}.
One wants to color the exterior of the Julia set to distinguish the level set of the function G_{c}. To that end, we will use two coloring function, $u, v: \mathbb{R}_{+} \mapsto(\mathbb{Z} /(256 \mathbb{Z}))^{3}$, given by the formulas:

$$
u(x)=\left\{\begin{array}{l}
(0,0,0) \text { if } x=0, \\
\left(128+\left\lfloor\frac{10000 x}{128}\right\rfloor,\lfloor\log \log |x|\rfloor,\lfloor 100 \cdot \log |x|\rfloor\right) \text { otherwise }
\end{array}\right.
$$

and

$$
\begin{array}{r}
v(x)=\left(\left\lfloor 255 \cdot \frac{1+\cos (2 \sqrt{2} \pi \log |x|)}{2}\right\rfloor,\left\lfloor 255 \cdot \frac{1+\cos (2 \sqrt{3} \pi \log |x|)}{2}\right\rfloor\right. \\
\left.\left\lfloor 255 \cdot \frac{1+\cos (2 \sqrt{2} \pi \log \log |x|)}{2}\right\rfloor\right),
\end{array}
$$

if $x>0$ and $v(0)=(0,0,0)$, Note that the three values between 0 and 255 correspond to the triple associated to a color in the RGB convention. We will set the following values of c :

$$
\begin{array}{r}
c_{0}=0 c_{1}=-0.123+i 0.745 \\
c_{2}=-1 \\
c_{3}=0.3+i 0.5 \\
c_{4}=-0.8+0.156 i
\end{array}
$$

Exercice 1. (Coloring the Julia set) Ideally, one wishes to color the exterior of the Julia by different colors depending on the values of $G_{c}(z)$. Namely associate to z the color $u\left(G_{c}(z)\right.$) or $v\left(G_{c}(z)\right)$.
(1) (2 points) If $z \in K(f)$, show that $G_{c}(z)=0$.
(2) (4 points) Assume that $\left|z_{n}\right|$ diverges to ∞.
(a) Express $\log \left|z_{n+1}\right|$ in terms of z_{n} and c and deduce an expression of $G_{n+1}(z)$ in terms of $G_{n}(z)$ and $\log \left|1+c / z_{n}^{2}\right|$.
(b) Show that if $z \notin K(f)$, then the function $G_{c}(z)>0$.
(3) (5 points) Write a program that draws the colors the exterior of $K\left(f_{c_{0}}\right), K\left(f_{c_{1}}\right), K\left(f_{c_{2}}\right), K\left(f_{c_{3}}\right)$ and $K\left(f_{c_{4}}\right)$ using the color function u.
(4) (5 points) Write a program that draws the colors the exterior of $K\left(f_{c_{0}}\right), K\left(f_{c_{1}}\right), K\left(f_{c_{2}}\right), K\left(f_{c_{3}}\right)$ and $K\left(f_{c_{4}}\right)$ using the color function v.
(4) (5 points) Does your previous program really colors any point $z \in \mathbb{C}$ as $u\left(G_{c}(z)\right)$? If not explain the approximation you did and discuss the complexity of your code.

We recall that the Mandelbrot set is the set:

$$
\begin{equation*}
\mathcal{M}=\left\{c \in \mathbb{C} \mid\left(f_{c}^{n}(0)\right)_{n} \text { is bounded }\right\} \tag{2}
\end{equation*}
$$

Similarly, one wishes to color the exterior of \mathcal{M} as follows. For any point $c \in \mathbb{C}$, we color it by $u\left(G_{c}(0)\right)$ or $v\left(G_{c}(0)\right)$

Exercice 2. (Coloring of the Mandelbrot set)
(1) (2 points) Assume that $c \in \mathcal{M}$, show that $G_{c}(0)=0$.
(2) (2 points) If $c \notin \mathcal{M}$, show that $G_{c}(0)>0$.
(3) (5 points) Write a program that colors the exterior of \mathcal{M} using the color function u.
(4) (5 points) Write a program that colors the exterior of \mathcal{M} using the color function v.
(5) (10 points)This last question is more experimental. Choose a point $c^{\prime} \in \mathbb{C}$ near the boundary of the Mandelbrot set. One wishes to produce a picture that shows more detail on the boundary on a square $S=\left\{c \in \mathbb{C} \mid \max \left(\left|\operatorname{Re}\left(c-c^{\prime}\right)\right|,\left|\operatorname{Im}\left(c-c^{\prime}\right)\right|\right) \leqslant 1 / 2\right\}$. Define an appropriate color function w which would capture the properties of the boundary of \mathcal{M} on S.
(6) (10 points) On the previous question, explain carefully what you did to choose the function w and explain the advantages and defect of the picture of S you produced, what detail does your color function capture?

