MAT 331-Fall 20: Project 2

In this project, you can use any code from the previous homeworks. The libraries you are allowed to use are:

1. The PIL library (to draw).
2. The math library.
3. The string library.

Exercice 1. (Apollonian packing) In this project, we will draw an Apollonian packing. We first prove a mathematical statement on circle packings.
(1) Consider three circles C_{0}, C_{1}, C_{2} in the complex plane which are mutually tangent. We show that there are exactly two other circles C_{3}, C_{4} which are tangent to the 3 circles C_{0}, C_{1}, C_{2}. We consider the map $f_{0}: z \mapsto 1 / z$, it is called the inversion with respect to the point $0 \in \mathbb{C}$. In general the inversion with respect to a point $a \in \mathbb{C}$ is $f_{a}: z \mapsto a+1 /(z-a)$. One important fact about inversion we will admit is that if two curves are tangent, then their images by the inversion will also be tangent.
(1.a) (5 points) If C is a circle containing 0 , show that $f_{0}(C)$ is a line (Hint: first treat the case where the center lies on the real axis).
(1.b) (5 points) If C is a circle such that 0 belongs to the interior of the disk bounded by C, then $f_{0}(C)$ is another circle satisfying the same property (Hint: first treat the case where the center lies on the real axis, write the equation of C and divide by $z \bar{z}$).
(1.c) (5 points) If C is a circle such that 0 belongs to the exterior of the disk bounded by C, then $f_{0}(C)$ is another circle satisfying the same property (Hint: first treat the case where the center lies on the real axis).
(1.d) (5 points) Given three mutually tangent circles C_{0}, C_{1}, C_{2}, show that there are exactly two circles C such that C is tangent to all three circles (Hint: Consider the image of these circles by the inversion with respect to a point in the intersection $C_{0} \cap C_{1}$).
(2) (10 points) Consider the circle C_{0} in the complex plane given by:

$$
\begin{equation*}
C_{0}=\left\{\left.z \in \mathbb{C}| | z-\frac{1}{2} \right\rvert\,<=\frac{1}{2}\right\} . \tag{1}
\end{equation*}
$$

Denote by D_{0} the disk of radius $1 / 2$ whose boundary is determined by C_{0}. We consider three other circles $C_{1}, C_{2}, C_{3} \subset D_{0}$ which are mutually tangent and such which are all tangent to C_{0}. These circle determine four regions $R_{0}, R_{1}, R_{2}, R_{3}$ where each R_{i} is delimited the arcs joining the points $C_{j} \cap C_{k}$ for $j, k \neq i$. For each region R_{i}, we construct a unique circle tangent to each circle C_{j} for all $j \neq i$, distinct from C_{i} and we obtain the Apollonian packing of order $n=1$. We obtain 4 new circle, then repeat the process inductively on each of the 12 new regions. We obtain the following figure:
Write a program that takes in input two circles C_{1}, C_{2} tangent to C_{0} in the disk D_{0}, an integer n, and draws the Apollonian packing of order n.
(3) (10 points) Explain carefully the intermediate calculations you needed to write the above program. Estimate the complexity of your algorithm as a function of the order n of the Apollonian gasket.

