
MAT 331-Fall 20: Project 1

In this project, you can use any code from the previous homeworks.
You are NOT allowed to use the functions pow, sqrt, or any external library except the

string library.
You are allowed to use any previous homework code, as long as it does not break the above

rule.
For each exercice, each student has to decrypt a unique �le. Take your student id, the

caesar encrypted �les are "caesar_encrypted_(your id).txt" where "(your id)" is replaced
by your student id number.

For example if my student id is "123456", then the associated �lenames are:
caesar_encrypted_123456.txt,
vigenere_encrypted_123456.txt
rsa_encrypted_123456.txt

Exercice 1. (Caesar cryptography) The �le "caesar_encrypted_(your id).txt" has been
encrypted using a Caesar cypher (Hint: the �rst line of the real message contains the word
"the").

1. Write a program that decrypts it (using a python code) and creates a �le with the decrypted
message inside "caesar_decrypted_(your id).txt".

2. (Math part) Explain your algorithm and describe its complexity.

Solution for (2). How we �nd the right key.
The decryption key is a letter of the alphabet, the padding number p0 which is an integer

between 0 and 25. If the encryption key is e (an integer between 1 and 26), the decryption
padding number p = −e modulo 26. We �rst write a function caesar_encrypt(text,key)
which takes a string text, a padding key and returns the decrypted chain using the key. There
are exactly 25 possibilities for p. To �nd the right padding p, we test all the possibilities.
The hint shows us that the �rst sentence contains the word the. So we write a function
determine_caesar_key(�lename) which opens the encrypted �le �lename, reads the �rst
line m, takes for each integer p, decrypts the �rst sentence using the padding p = 1..25 and
saves it into the chain mp and then determines whether the word "the" belongs in the decrypted
sentence mp (using the function str.�nd()). If it does, then we print the integer p and the string
mp.

Let us determine the complexity of the above function. There are 25 di�erent keys p, and the
�rst line has 54 characters, so the each decryption has complexity 54 (we decrypt 54 characters
and change them one by one). The complexity of the function str.�nd is linear, we apply this
function 25 times, overall the complexity is 2 · 25 · 54 = 2700.

Once we �nd the right key p0, then we proceed by decrypting the whole �le using the function
caesar_encrypt_�le(inputname,outputname,key) using the key p0, which takes the encrypted
�le inputname, and decrypts it and stores the decrypted message into the �le outputname.

1



Exercice 2. (Vigenère cryptography) Alice has a message written in English, with only lower-
case letters, breaklines and spaces.

She encrypts her message in the �le "vigenere_encrypted_(your id).txt" by replacing
the letters using a Vigenère cypher with 2 characters and transfers it to Bob. You intercept her
�le and want to decypher her message.

For example, if her message was :
"abcd\nefghi" and her key is "ab", then the encrypted �le would contain "acdd\n �hhj"

1. Write a program that decrypts it (using a python code) and creates a �le with the decrypted
message inside "vigenere_decrypted_(your id).txt".

2. (Math part) Explain your algorithm and describe its complexity.

Solution for (2). We do the same as in the Caesar decryption method.
A key for the vigenere cypher is a pair of numbers (p0, p1) between 0 and 25. The total

number of keys is 26 · 26 = 676. We write a function determine_vigenere_key(�lename) which
reads the �rst line l of the encrypted text �lename. Then for each possible key k = (i, j) where
i, j = 0..25, we decrypt the line l using the key k and stores it in a string mk. Then we test
whether the string mk contains the word "the" using the function str.�nd(). If it does, then we
print the key k and the string mk. This way we don't print the 676 possibles messages mk but
only a few.

Testing on the encrypted �le, we �nd that only one key (p0, p1) gives an English message.
We then decrypt the whole �le using the function vigenere_encrypt_�le(inname,outname,key)
using the key (p0, p1) we just found.

Let us now describe the complexity of the above method. The �rst line has 43 characters,
and for each of the 676 possible keys, we encrypt 43 characters, so the number of character
conversion we do is: 676 · 43 = 29068. Also for each of the decrypted messages mk, we search
whether it contains the word the, so the complexity is proportional to 43. Overall, the total
complexity for the function determine_vigenere_key is of the order:

2 · 676 · 43 = 58136.

In the following exercice, you can use the functions str.strip(), the function chr(), and the
function ord().

Exercice 3. (RSA) Alice and Bob communicate using a RSA cypher. We denote by (e, n)
the public key, (d, n) the private key only known to Bob. Message has an original message
containing 5830 characters. To send the encrypted message to Bob, she proceeds as follows:

Step 1 She creates a �le called "rsa_encrypted_(your id).txt".

Step 2 She writes in this �le "exponent = " and puts her encryption exponent and breaks a line.

Step 3 She then writes "integer n = " and writes the value of n and breaks a line.

Step 4 She converts her message into a sequence of numbers with three digits using the ASCII
convention, for example the text with 15 characters "This is a test" would be converted
to the list of numbers

[084, 104, 105, 115, 032, 105, 115, 032, 097, 032, 116, 101, 115, 116, 046]. (1)

2



Step 5 She then regroups all the numbers 5 by 5. For example, for the above sentence "This is a
test" she would then get the list:

[84104105115032, 105115032097032, 116101115116046] (2)

Step 6 She encrypts each of these numbers using the RSA method by raising each of these integers
at the power e modulo n. She obtains a list of numbers and writes them in the �le
separating each one by a comma.

You intercept her message. Your goal is to decrypt her message.

1) Write a program that decrypts her message and write the decrypted message inside a �le
called "rsa_decrypted_(your id).txt".

2) (Math part) Explain your algorithm and describe its complexity.

Solution for (2). We know n = 3387981625011481 can be written as p ·q = n where p, q are two
prime numbers. We �rst write a function �nd_factor(n) that takes n and determines the two
factors p and q. Note that n is of the order 4 · 1016, and we test whether each number between
2 and

√
n divides n, so in our case approximately 233 numbers. So the number of euclidean

divisions we do is approximately 233.
We thus �nd that the prime numbers p and q are 32452843 and 104397067, and we �nd

these numbers in less than 1 minute.
We store the integers p and q in our program and continue with the decryption and set

N = (p− 1) · (q − 1).
We write a function compute_decryption_key(e,N) which takes the exponent e and N and

�nd the decryption exponent d using the euclidean division algorithm (done in the function
bezout()). The complexity of this algorithm is proportional to log2(N) ' 51.5. We then store
the decryption exponent d into a variable of the same name.

We then continue and write a function fast_expand(m,d,n) that takes a number m, an
exponent d and n and computes md mod n. The way we do this is by a fast exponentiation
method, so the complexity is O(log2(d)).

Finally, our program rsa_decrypt_�le_output(�lename,outname) reads each number m in
the third line of the encrypted �le �lename, decrypts m by taking the exponent m′ = md mod
n and then converts m′ into a string using the function reconvert. We then print everything
into an output �le called outname.

3


