MAT 331-Fall 20: Homework 3

The first exercices are purely programming exercices.
Exercice 1. (a) (2 points) Using a for loop, write a function for_decreasing_by_three(\mathbf{n}) that takes an integer $n \geq 0$ and prints some numbers three by three, separated by a comma, in the decreasing order from n to 2,1 or 0 .
For example, the function for_decreasing_by_three(10) will print: 10, 7, 4, 1, Finish.
(b) (2 points) Using a while loop, write a function while_decreasing_by_three(n) which takes an integer $n \geq 0$ and does the same as the function for_decreasing_by_three(n).
(c) (2 points) Using a recursive function, write a function rec_decreasing_by_three(\boldsymbol{n}) that does the same as the above two functions.

Exercice 2. (a) (2 points) Using a for loop, write a function for_factorial(\boldsymbol{n}) that takes an integer n, prints "Error" if $n<0$ and returns -1 or returns the factorial $n!$ if $n \geq 0$. (Note that by convention $0!=1$).

Exercice 3. (A multiplication table) (2 points) Write a function multiplication_table(\boldsymbol{n}) which takes an integer $n \geq 1$ which prints the multiplication table for all integers between 1 and n.
For example, the output of multiplication_table(3) will be:
1, 2,3
$2,4,6$
$3,6,9$.
The last exercice will be in two parts. A programming part and a math part.
Exercice 4. (Trapezoid integral with precision) We want to estimate the integral

$$
\begin{equation*}
\int_{a}^{b} e^{-t^{2}} d t \tag{1}
\end{equation*}
$$

for $a, b \in \mathbb{R}$ using the trapezoidal method. We denote by $f(t)$ the function $e^{-t^{2}}$. The trapezoid integral at step n, denoted by $T_{n}(f)$, is obtained from f by subdividing the interval $[a, b]$ into n subintervals $\left[x_{i}=a+i(b-a) / n, x_{i+1}=a+(i+1)(b-a) / n\right]$ and taking the sum of the areas of the trapezoid whose corners are given by the points $\left(x_{i}, 0\right),\left(x_{i+1}, 0\right),\left(x_{i+1}, f\left(x_{i+1}\right)\right),\left(x_{i}, f\left(x_{i}\right)\right)$.
(1) (2 points) Write an expression of $T_{n}(f)$.
(2) We want to estimate the difference

$$
\begin{equation*}
\left|\int_{a}^{b} f(t) d t-T_{n}(f)\right| \tag{2}
\end{equation*}
$$

(2.a) (2 points) Using the mean value theorem, show that for any $a, b \in \mathbb{R}$, there exists $t \in[a, b]$ such that:

$$
\begin{equation*}
f^{\prime}(t)=\frac{f(b)-f(a)}{b-a} \tag{3}
\end{equation*}
$$

(2.b) (2 points) The Taylor-Lagrange formula states at a that for all $t \in \mathbb{R}$, there exists $\theta \in[a, t]$ such that:

$$
\begin{equation*}
f(t)=f(a)+(t-a) f^{\prime}(a)+\frac{(t-a)^{2}}{2} f^{\prime \prime}(\theta) \tag{4}
\end{equation*}
$$

Using the Taylor Lagrange formula at a and b and question (2.a) show that:

$$
\begin{equation*}
\left|\int_{a}^{b} f(t)-\frac{f(a)+f(b)}{2} d t\right| \leqslant \frac{5(b-a)^{3}}{12} \max _{[a, b]}\left|f^{\prime \prime}(x)\right| . \tag{5}
\end{equation*}
$$

(2.c) (2 points) By decomposing the interval into n subintervals and applying the previous inequality on each of these subintervals, prove that:

$$
\begin{equation*}
\left|\int_{a}^{b} f(t) d t-T_{n}(f)\right| \leqslant \frac{5(b-a)^{3}}{12 n^{2}} \max _{[a, b]}\left|f^{\prime \prime}(x)\right| \tag{6}
\end{equation*}
$$

(3) (2 points) Find the maximum value of $\left|f^{\prime \prime}(x)\right|$.
(4) (2 points) Write a function trapezoid (a, b, n) that takes two real numbers a, b and an integer n and returns $T_{n}(f)$ the trapezoidal integral between a and b of step n.
(5) (2 points) Write a function \boldsymbol{n}_{-}epsilon $(\boldsymbol{a}, \boldsymbol{b}, \epsilon$) that take two real numbers a, b and $\epsilon>0$ and returns an integer N_{ϵ} satisfying the condition

$$
\left|T_{N_{\epsilon}}(f)-\int_{a}^{b} f(t) d t\right| \leqslant \epsilon
$$

(6) (1 point) Write a function trapezoid_integral(a,b, ϵ) that takes two real numbers a, b and $\epsilon>0$ and returns the value of a trapezoidal integral $T_{n}(f)$ satisfying:

$$
\left|T_{n}(f)-\int_{a}^{b} f(t) d t\right| \leqslant \epsilon
$$

