MAT 331-Fall 20: Homework 2

Exercice 1. Consider a sequence $\left(S_{n}\right)$ given by the conditions $S_{0}=S_{1}=1$ and the recursive formula:

$$
\begin{equation*}
S_{n}=3 S_{n-1}+2 S_{n-2}, \tag{1}
\end{equation*}
$$

for all $n \geq 2$.
(a) (1 point) Write a recursive function rec sequence(\boldsymbol{n}) which takes n and returns the value S_{n}. (test your code by printing $S_{0}, \bar{S}_{1}, S_{2}, S_{3}, S_{4}$)
(b) (1 point) Using a for loop, write a function, for_sequence(\boldsymbol{n}) which takes n and returns the value S_{n}. (test your code by printing $S_{0}, S_{1}, S_{2}, S_{3}, S_{4}$)
(c) (2 points) Estimate the memory consumption and complexity for each of these codes. (Explain carefully your computations)

Exercice 2. (Newton method) The purpose of this exercice is to compute the square root of a number a, with or without using the standard math functions.
(a) (1 point) Write a function usual_sqrt(a) which takes a floating number a and returns \sqrt{a} using the standard math functions if $a \geq 0$, or prints an error if $a<0$ and returns -1 .
(b) (3 points) Using the Newton method, write a function newton_sqrt(a, epsilon) which take a floating number a and $\epsilon>0$ and returns a value σ where $|\sigma-\sqrt{a}|<\epsilon$ if $a \geq 0$, or prints an error if $a<0$ and returns -1 .
(c) (2 points) For $a=13$ and a precision $\epsilon=10^{-7}$. How many times do you apply the newton recursion formula in newton_sqrt($13,10^{-7}$)? (Hint: use global variables)

