MAT 331-Fall 20: Homework 2

Exercice 1. Consider a sequence (S_n) given by the conditions $S_0 = S_1 = 1$ and the recursive formula:

$$S_n = 3S_{n-1} + 2S_{n-2},\tag{1}$$

for all $n \geq 2$.

- (a) (1 point) Write a recursive function rec_sequence(n) which takes n and returns the value S_n . (test your code by printing S_0, S_1, S_2, S_3, S_4)
- (b) (1 point) Using a for loop, write a function, for sequence(n) which takes n and returns the value S_n . (test your code by printing S_0, S_1, S_2, S_3, S_4)
- (c) (2 points) Estimate the memory consumption and complexity for each of these codes. (Explain carefully your computations)

Exercice 2. (Newton method) The purpose of this exercice is to compute the square root of a number a, with or without using the standard math functions.

- (a) (1 point) Write a function $usual_sqrt(a)$ which takes a floating number a and returns \sqrt{a} using the standard math functions if $a \ge 0$, or prints an error if a < 0 and returns -1.
- (b) (3 points) Using the Newton method, write a function **newton_sqrt(a, epsilon)** which take a floating number a and $\epsilon > 0$ and returns a value σ where $|\sigma \sqrt{a}| < \epsilon$ if $a \ge 0$, or prints an error if a < 0 and returns -1.
- (c) (2 points) For a = 13 and a precision $\epsilon = 10^{-7}$. How many times do you apply the newton recursion formula in **newton_sqrt(**13, 10⁻⁷**)**? (Hint: use global variables)