MAT 331-Fall 20:Solution for the math part of Homework 3

The last exercice will be in two parts. A programming part and a math part.
Exercice 1. (Trapezoid integral with precision) We want to estimate the integral

$$
\begin{equation*}
\int_{a}^{b} e^{-t^{2}} d t \tag{1}
\end{equation*}
$$

for $a, b \in \mathbb{R}$ using the trapezoidal method. We denote by $f(t)$ the function $e^{-t^{2}}$. The trapezoid integral at step n, denoted by $T_{n}(f)$, is obtained from f by subdividing the interval $[a, b]$ into n subintervals $\left[x_{i}=a+i(b-a) / n, x_{i+1}=a+(i+1)(b-a) / n\right]$ and taking the sum of the areas of the trapezoid whose corners are given by the points $\left(x_{i}, 0\right),\left(x_{i+1}, 0\right),\left(x_{i+1}, f\left(x_{i+1}\right)\right),\left(x_{i}, f\left(x_{i}\right)\right)$.
(1) (2 points) Write an expression of $T_{n}(f)$.
(2) We want to estimate the difference

$$
\begin{equation*}
\left|\int_{a}^{b} f(t) d t-T_{n}(f)\right| \tag{2}
\end{equation*}
$$

(2.a) (2 points) Using the mean value theorem, show that for any $a, b \in \mathbb{R}$, there exists $t \in[a, b]$ such that:

$$
\begin{equation*}
f^{\prime}(t)=\frac{f(b)-f(a)}{b-a} \tag{3}
\end{equation*}
$$

(2.b) (2 points) The Taylor-Lagrange formula states at a that for all $t \in \mathbb{R}$, there exists $\theta \in[a, t]$ such that:

$$
\begin{equation*}
f(t)=f(a)+(t-a) f^{\prime}(a)+\frac{(t-a)^{2}}{2} f^{\prime \prime}(\theta) . \tag{4}
\end{equation*}
$$

Using the Taylor Lagrange formula at a and b and question (2.a) show that:

$$
\begin{equation*}
\left|\int_{a}^{b} f(t)-\frac{f(a)+f(b)}{2} d t\right| \leqslant \frac{5(b-a)^{3}}{12} \max _{[a, b]}\left|f^{\prime \prime}(x)\right| . \tag{5}
\end{equation*}
$$

(2.c) (2 points) By decomposing the interval into n subintervals and applying the previous inequality on each of these subintervals, prove that:

$$
\begin{equation*}
\left|\int_{a}^{b} f(t) d t-T_{n}(f)\right| \leqslant \frac{5(b-a)^{3}}{12 n^{2}} \max _{[a, b]}\left|f^{\prime \prime}(x)\right| \tag{6}
\end{equation*}
$$

(3) (2 points) Find the maximum value of $\left|f^{\prime \prime}(x)\right|$.
(4) (2 points) Write a function trapezoid(a, b, n) that takes two real numbers a, b and an integer n and returns $T_{n}(f)$ the trapezoidal integral between a and b of step n.
(5) (2 points) Write a function \boldsymbol{n}_{-}epsilon $(\boldsymbol{a}, \boldsymbol{b}, \epsilon$) that take two real numbers a, b and $\epsilon>0$ and returns an integer N_{ϵ} satisfying the condition

$$
\left|T_{N_{\epsilon}}(f)-\int_{a}^{b} f(t) d t\right| \leqslant \epsilon
$$

(6) (1 point) Write a function trapezoid_integral(a,b, ϵ) that takes two real numbers a, b and $\epsilon>0$ and returns the value of a trapezoidal integral $T_{n}(f)$ satisfying:

$$
\left|T_{n}(f)-\int_{a}^{b} f(t) d t\right| \leqslant \epsilon .
$$

Solution to question (1). An expression of $T_{n}(f)$ is:

$$
T_{n}(f)=\frac{b-a}{n} \sum_{i=0}^{n-1} \frac{1}{2}\left(f\left(a+i \frac{b-a}{n}\right)+f\left(a+(i+1) \frac{b-a}{n}\right)\right) .
$$

Solution to question 2.a. This is exactly the statement of the mean value theorem.
Solution to question 2.b . We fix $t \in[a, b]$. We write the Taylor Lagrange formula at a :

$$
\begin{equation*}
f(t)-f(a)=(t-a) f^{\prime}(a)+\frac{(t-a)^{2}}{2} f^{\prime \prime}\left(\theta_{t}\right) \tag{7}
\end{equation*}
$$

where $\theta_{t} \in[a, t]$. We write the Taylor-Lagrange at b :

$$
\begin{equation*}
f(t)-f(b)=(t-b) f^{\prime}(b)+\frac{(t-b)^{2}}{2} f^{\prime \prime}\left(\gamma_{t}\right) \tag{8}
\end{equation*}
$$

where $\gamma_{t} \in[t, b]$.
Set Δ to be the difference:

$$
\begin{equation*}
\Delta=\int_{a}^{b}\left(f(t)-\frac{f(a)+f(b)}{2}\right) d t \tag{9}
\end{equation*}
$$

Take $c \in[a, b]$ a point which satisfies the mean value theorem for f^{\prime} on $[a, b]$:

$$
f^{\prime \prime}(c)=\frac{f^{\prime}(b)-f^{\prime}(a)}{b-a}
$$

We have using the above two equations and setting $M=\max _{[a, b]}\left|f^{\prime \prime}(x)\right|$.

$$
\begin{aligned}
& \Delta=\int_{a}^{b} \frac{2 f(t)-f(a)-f(b)}{2} d t \\
&=\int_{a}^{b} \frac{(f(t)-f(a))+(f(t)-f(b))}{2} \\
&=\frac{1}{2}\left(\int_{a}^{b}(t-a) f^{\prime}(a) d t+\int_{a}^{b} \frac{(t-a)^{2}}{2} f^{\prime \prime}\left(\theta_{t}\right) d t+\int_{a}^{b}(t-b) f^{\prime}(b) d t+\int_{a}^{b} \frac{(t-b)^{2}}{2} f^{\prime \prime}\left(\gamma_{t}\right)\right) \\
&=\frac{1}{2}\left(\frac{(b-a)^{2}}{2} f^{\prime}(a)-\frac{(b-a)^{2}}{2} f^{\prime}(b)\right)+\frac{1}{2}\left(\int_{a}^{b} \frac{(t-a)^{2}}{2} f^{\prime \prime}\left(\theta_{t}\right) d t+\int_{a}^{b} \frac{(t-b)^{2}}{2} f^{\prime \prime}\left(\gamma_{t}\right)\right) \\
&|\Delta| \leqslant \frac{1}{2}\left(\frac{(b-a)^{2}}{2} f^{\prime}(a)-\frac{(b-a)^{2}}{2} f^{\prime}(b)\right)+\frac{M}{4}\left(\int_{a}^{b}(t-a)^{2} d t+\int_{a}^{b}(t-b)^{2} d t\right) \\
&|\Delta| \leqslant \frac{(b-a)^{3}}{4} \frac{\left|f^{\prime}(a)-f^{\prime}(b)\right|}{b-a}+\frac{M}{4}\left(\int_{a}^{b}(t-a)^{2} d t+\int_{a}^{b}(t-b)^{2} d t\right) \\
&|\Delta| \leqslant \frac{(b-a)^{3}\left|f^{\prime \prime}(c)\right|}{4}+\frac{M}{4} \frac{2(b-a)^{3}}{3} \\
&|\Delta| \leqslant M(b-a)^{3}\left(\frac{1}{4}+\frac{1}{6}\right) \\
&|\Delta| \leqslant \frac{5 M(b-a)^{3}}{12} .
\end{aligned}
$$

Solution of (3). We have:

$$
\begin{gathered}
f^{\prime}=-2 x e^{-x^{2}}=-2 x f, \\
f^{\prime \prime}(x)=-2 f-2 x f^{\prime}=\left(4 x^{2}-2\right) e^{-x^{2}} .
\end{gathered}
$$

Observe that the function $f^{\prime \prime}$ is an even function. And the third derivative satisfies:

$$
f^{\prime \prime \prime}(x)=8 x f+\left(4 x^{2}-2\right)(-2 x f)=\left(12 x-8 x^{3}\right) e^{-x^{2}}=4 x e^{-x^{2}}\left(3-2 x^{2}\right)
$$

So the function $\left|f^{\prime \prime}(x)\right|$ is decreasing on $[0,1 / \sqrt{2}]$, then increasing on $[1 / \sqrt{2}, \sqrt{3 / 2}]$ then decreasing on $[\sqrt{3 / 2},+\infty]$. We deduce that

$$
\max \left|f^{\prime \prime}(x)\right|=\max \left(f^{\prime \prime}(0), f^{\prime \prime}(\sqrt{3 / 2})\right)
$$

