MAT 331-Fall 20: Correction Homework 2

Exercice 1. Consider a sequence (S_n) given by the conditions $S_0 = S_1 = 1$ and the recursive formula:

$$S_n = 3S_{n-1} + 2S_{n-2},\tag{1}$$

for all $n \geq 2$.

- (a) (1 point) Write a recursive function $rec_sequence(n)$ which takes n and returns the value S_n . (test your code by printing $S_0, \overline{S_1}, S_2, S_3, S_4$)
- (b) (1 point) Using a **for loop**, write a function, **for_sequence(n)** which takes n and returns the value S_n . (test your code by printing S_0, S_1, S_2, S_3, S_4)
- (c) (2 points) Estimate the memory consumption and complexity for each of these codes. (Explain carefully your computations)

Correction of question (c). Let us denote by m_n the memory consumption of rec_sequence(n) and by c_n the complexity of that function.

The inductive relation for the function m(n).

$$m_{n+1} = m_n + m_{n-1} + 48. (2)$$

and $m_0 = m_1 = 1$. Denote $u_n = m_n - l$, the inductive relation induced by u_n is given by:

$$u_{n+1} + l = u_n + l + u_{n-1} + l + 48. (3)$$

Setting l = -48, we obtain:

$$u_{n+1} = u_n + u_{n-1},\tag{4}$$

where $u_0 = u_1 = m_0 - l = 1 + 48 = 49$.

This is closely related to the Fibonacci sequence (a sequence defined by a linear recurrence of order 2), which grows like:

$$u_n = O\left(\left(\frac{1+\sqrt{5}}{2}\right)^n\right). \tag{5}$$

This is because the golden mean is the largest root of the polynomial $X^2 - X - 1$. In particular, $m_n = o(r^n)$ where $r = (1 + \sqrt{5})/2$.

The computation of the complexity is similar, we compute the number of comparison, addition, multiplications, it satisfies:

$$c_{n+1} = c_n + c_{n-1} + 4, (6)$$

where $c_0, c_1 = 1$. Setting $v_n = c_n - L$, we have:

$$v_{n+1} + L = v_n + L + v_{n-1} + L + 4 \tag{7}$$

Setting L = -4, we get:

$$v_{n+1} = v_n + v_{n-1}, (8)$$

so $v_n = O(r^n)$ and $c_n = O(r^n)$ where $r = (1 + \sqrt{5})/2$ is the golden mean.

We now compute the complexity c'_n and memory consumption m'_n of the function for_sequence(n). For the complexity, we do one comparison at the start, initialize three values and execute the code in the loop n-1 times. In each loop, we do 2 multiplications, one addition and three assignments, in total:

$$c'_n = 4 + (n-1)(2+1+3) = 6n - 2 = O(n).$$
(9)

For the memory consumption, we only work with the variables u,v,value and p. In total $m'_n = 4 \cdot 24 = 96$ bytes (the size of an int is 24 bytes).