MAT 331-Fall 20: Correction Homework 2

Exercice 1. Consider a sequence $\left(S_{n}\right)$ given by the conditions $S_{0}=S_{1}=1$ and the recursive formula:

$$
\begin{equation*}
S_{n}=3 S_{n-1}+2 S_{n-2}, \tag{1}
\end{equation*}
$$

for all $n \geq 2$.
(a) (1 point) Write a recursive function rec_sequence(\boldsymbol{n}) which takes n and returns the value S_{n}. (test your code by printing $S_{0}, S_{1}, S_{2}, S_{3}, S_{4}$)
(b) (1 point) Using a for loop, write a function, for_sequence(\boldsymbol{n}) which takes n and returns the value S_{n}. (test your code by printing $S_{0}, S_{1}, S_{2}, S_{3}, S_{4}$)
(c) (2 points) Estimate the memory consumption and complexity for each of these codes. (Explain carefully your computations)

Correction of question (c). Let us denote by m_{n} the memory consumption of rec_sequence(n) and by c_{n} the complexity of that function.

The inductive relation for the function $m(n)$.

$$
\begin{equation*}
m_{n+1}=m_{n}+m_{n-1}+48 . \tag{2}
\end{equation*}
$$

and $m_{0}=m_{1}=1$. Denote $u_{n}=m_{n}-l$, the inductive relation induced by u_{n} is given by:

$$
\begin{equation*}
u_{n+1}+l=u_{n}+l+u_{n-1}+l+48 . \tag{3}
\end{equation*}
$$

Setting $l=-48$, we obtain:

$$
\begin{equation*}
u_{n+1}=u_{n}+u_{n-1}, \tag{4}
\end{equation*}
$$

where $u_{0}=u_{1}=m_{0}-l=1+48=49$.
This is closely related to the Fibonacci sequence (a sequence defined by a linear recurrence of order 2), which grows like:

$$
\begin{equation*}
u_{n}=O\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}\right) \tag{5}
\end{equation*}
$$

This is because the golden mean is the largest root of the polynomial $X^{2}-X-1$. In particular, $m_{n}=o\left(r^{n}\right)$ where $r=(1+\sqrt{5}) / 2$.

The computation of the complexity is similar, we compute the number of comparison, addition,multiplications, it satisfies:

$$
\begin{equation*}
c_{n+1}=c_{n}+c_{n-1}+4, \tag{6}
\end{equation*}
$$

where $c_{0}, c_{1}=1$. Setting $v_{n}=c_{n}-L$, we have:

$$
\begin{equation*}
v_{n+1}+L=v_{n}+L+v_{n-1}+L+4 \tag{7}
\end{equation*}
$$

Setting $L=-4$, we get:

$$
\begin{equation*}
v_{n+1}=v_{n}+v_{n-1}, \tag{8}
\end{equation*}
$$

so $v_{n}=O\left(r^{n}\right)$ and $c_{n}=O\left(r^{n}\right)$ where $r=(1+\sqrt{5}) / 2$ is the golden mean.
We now compute the complexity c_{n}^{\prime} and memory consumption m_{n}^{\prime} of the function for_sequence (n).
For the complexity, we do one comparison at the start, initialize three values and execute the code in the loop $n-1$ times. In each loop, we do 2 multiplications, one addition and three assignments, in total:

$$
\begin{equation*}
c_{n}^{\prime}=4+(n-1)(2+1+3)=6 n-2=O(n) . \tag{9}
\end{equation*}
$$

For the memory consumption, we only work with the variables u, v, value and p . In total $m_{n}^{\prime}=4 \cdot 24=96$ bytes (the size of an int is 24 bytes).

