6 Chapter 1 | Integration

speeds up to five times the wind speed. If we know how fast an iceboat is moving, we can use integration to determine how
far it travels. We revisit this question later in the chapter (see Example 1.27).

Determining distance from velocity is just one of many applications of integration. In fact, integrals are used in a wide
variety of mechanical and physical applications. In this chapter, we first introduce the theory behind integration and use
integrals to calculate areas. From there, we develop the Fundamental Theorem of Calculus, which relates differentiation and
integration. We then study some basic integration techniques and briefly examine some applications.

1.1 | Approximating Areas

Learning Objectives

1.1.1 Use sigma (summation) notation to calculate sums and powers of integers.
1.1.2 Use the sum of rectangular areas to approximate the area under a curve.
1.1.3 Use Riemann sums to approximate area.

Archimedes was fascinated with calculating the areas of various shapes—in other words, the amount of space enclosed by
the shape. He used a process that has come to be known as the method of exhaustion, which used smaller and smaller shapes,
the areas of which could be calculated exactly, to fill an irregular region and thereby obtain closer and closer approximations
to the total area. In this process, an area bounded by curves is filled with rectangles, triangles, and shapes with exact area
formulas. These areas are then summed to approximate the area of the curved region.

In this section, we develop techniques to approximate the area between a curve, defined by a function f(x), and the x-axis
on a closed interval [a, b]. Like Archimedes, we first approximate the area under the curve using shapes of known area

(namely, rectangles). By using smaller and smaller rectangles, we get closer and closer approximations to the area. Taking
a limit allows us to calculate the exact area under the curve.

Let’s start by introducing some notation to make the calculations easier. We then consider the case when f(x) is continuous

and nonnegative. Later in the chapter, we relax some of these restrictions and develop techniques that apply in more general
cases.

Sigma (Summation) Notation

As mentioned, we will use shapes of known area to approximate the area of an irregular region bounded by curves. This
process often requires adding up long strings of numbers. To make it easier to write down these lengthy sums, we look at
some new notation here, called sigma notation (also known as summation notation). The Greek capital letter X, sigma,

is used to express long sums of values in a compact form. For example, if we want to add all the integers from 1 to 20
without sigma notation, we have to write

14+24+34+4+54+6+7+8+9+10+11+12+13+14+15+16+ 17+ 18+ 19 + 20.
We could probably skip writing a couple of terms and write

1424344+ --+19+20,
which is better, but still cumbersome. With sigma notation, we write this sum as
20
2
i=1
which is much more compact.

Typically, sigma notation is presented in the form
n
Z i
i=1

where a; describes the terms to be added, and the i is called the index. Each term is evaluated, then we sum all the values,

7

beginning with the value when i =1 and ending with the value when i = n. For example, an expression like Z S;

i 1s
i=2
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Chapter 1 | Integration

interpreted as s, + 53 + 54 + 55+ 5 + 57. Note that the index is used only to keep track of the terms to be added; it does

not factor into the calculation of the sum itself. The index is therefore called a dummy variable. We can use any letter we
like for the index. Typically, mathematicians use i, j, k, m, and n for indices.

Let’s try a couple of examples of using sigma notation.

Example 1.1

Using Sigma Notation

a. Write in sigma notation and evaluate the sum of terms 3l for i = 1,2, 3, 4,5.

b. Write the sum in sigma notation:

1,1, 1,1
I+1+5+76+35

Solution
a. Write

30 =3+324+3343443°

DM

i=1

= 363.

b. The denominator of each term is a perfect square. Using sigma notation, this sum can be written as

. 1

@ 1.1 Write in sigma notation and evaluate the sum of terms 2ifor i =3, 4,5, 6.

The properties associated with the summation process are given in the following rule.

Rule: Properties of Sigma Notation

Let ay, a,,...,a, and by, b,,...,b, represent two sequences of terms and let ¢ be a constant. The following

properties hold for all positive integers n and for integers m, with 1 <m < n.

1.
£ (1.1)
Z C = nc
i=1
2.
@ v (1.2)
caj=c ), a;
i=1 i=1
3.
n n n (1.3)
z (al+bl)= Z a;+ Z b;
i=1 i=1 i=1
4,
(1.4)
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i a;= i ai+. 2 a; (1-5)

Proof

We prove properties 2. and 3. here, and leave proof of the other properties to the Exercises.

2. We have
n
Z cai =ca1+ca2+ca3+~-+can
i=1
=cla;+ap+az+ - +ay)
n
=C2 a,-.
i=1
3. We have
n
Z (aj+b;) =(ay+by)+lay+by)+(az+bs)+ - +an+by
i=1
=(a;+ay+ay+--+ap)+(b;+by+b3+ - +by)
n n
= Z ai‘l‘ Z bi‘
i=1 i=1
O

A few more formulas for frequently found functions simplify the summation process further. These are shown in the next
rule, for sums and powers of integers, and we use them in the next set of examples.

Rule: Sums and Powers of Integers

1. The sum of n integers is given by

n
Z"=1+2+"'+”=w‘
=1

2. The sum of consecutive integers squared is given by
n
z 22124224 4 n?= n(n + 1)6(2n+1)_
i=1
3.

The sum of consecutive integers cubed is given by

n 2 2
Y P=13+2 4. a3 B (”4+ D”
i=1

Example 1.2

Evaluation Using Sigma Notation

Write using sigma notation and evaluate:

a. The sum of the terms (i — 3)2 for i=1, 2,...,200.
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b. The sum of the terms (i3 - iz) fori=1,2,3,4,5,6.

Solution

a. Multiplying out (i — 3)2, we can break the expression into three terms.

200 200
2 =9 = X (P-6i+9)
200 200 200
=Y 2= Y 6i+ D9
=1 =1 i=1
1200 l 200 1200

=) 2-6) i+ )09

i=1 i=1 i=1
_ 200200 + 1)(400+ 1) 6[200(200 + l)] +9(200)
- 6 2
= 2,686,700 — 120,600 + 1800
= 2,567,900

b. Use sigma notation property iv. and the rules for the sum of squared terms and the sum of cubed terms.

i=1 i=1 i=1

_ 626+ 1% 66+ 1DR6) + 1)
4 6

64 _ 546
6

0

17
4

Il
w

5

@ 1.2 Find the sum of the values of 4 + 3i for i =1, 2,..., 100.

Example 1.3

Finding the Sum of the Function Values
Find the sum of the values of f(x) = x> over the integers 1, 2, 3,..., 10.

Solution

Using the formula, we have

—_
(=)

3 _ (10)2310+1)?
- 4

100(121)
4
3025.




10 Chapter 1 | Integration

1.3 20
@ Evaluate the sum indicated by the notation Z k+1).
k=1

Approximating Area
Now that we have the necessary notation, we return to the problem at hand: approximating the area under a curve. Let f(x)
be a continuous, nonnegative function defined on the closed interval [a, b]. We want to approximate the area A bounded by

f(x) above, the x-axis below, the line x = a on the left, and the line x = b on the right (Figure 1.2).

y

()

x Y

a b

Figure 1.2 An area (shaded region) bounded by the curve
f(x) at top, the x-axis at bottom, the line x = a to the left, and

the line x = b at right.

How do we approximate the area under this curve? The approach is a geometric one. By dividing a region into many small
shapes that have known area formulas, we can sum these areas and obtain a reasonable estimate of the true area. We begin

by dividing the interval |[a, b] into n subintervals of equal width, b 7 4 We do this by selecting equally spaced points
X@» X1, X,..., X, With xg=a, x, =b, and
xp—x_ =L o
fori=1,2,3,...,n.
We denote the width of each subinterval with the notation Ax, so Ax = b o 4 and

X;=xo+iAx

for i =1, 2, 3,..., n. This notion of dividing an interval [a, b] into subintervals by selecting points from within the interval

is used quite often in approximating the area under a curve, so let’s define some relevant terminology.

Definition

A set of points P = {x;} for i=0, 1, 2,...,n with a =xy < x| <Xy < <x,=>b, which divides the interval
[a, b] into subintervals of the form [xq, x{], [xy, X5l,..., [x,_1, x4] is called a partition of [a, b]. If the

subintervals all have the same width, the set of points forms a regular partition of the interval [a, b].
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We can use this regular partition as the basis of a method for estimating the area under the curve. We next examine two
methods: the left-endpoint approximation and the right-endpoint approximation.

Rule: Left-Endpoint Approximation

On each subinterval [x;_, x;] (for i =1, 2, 3,...,n), construct a rectangle with width Ax and height equal to
f(x;_ 1), which is the function value at the left endpoint of the subinterval. Then the area of this rectangle is
f(x; _ DAx. Adding the areas of all these rectangles, we get an approximate value for A (Figure 1.3). We use the

notation L, to denote that this is a left-endpoint approximation of A using n subintervals.

ArL, = f(xp)Ax+ f(x)Ax+ --- + f(x, _ DAx (1.6)
= ) flxi_DAx
i=1
y
Left
%%7 endpoints
/"
] -
a=x Xp_q1 b=x, X

Figure 1.3 In the left-endpoint approximation of area under a
curve, the height of each rectangle is determined by the function
value at the left of each subinterval.

The second method for approximating area under a curve is the right-endpoint approximation. It is almost the same as the
left-endpoint approximation, but now the heights of the rectangles are determined by the function values at the right of each
subinterval.

Rule: Right-Endpoint Approximation

Construct a rectangle on each subinterval [x; _, x;], only this time the height of the rectangle is determined by the
function value f(x;) at the right endpoint of the subinterval. Then, the area of each rectangle is f(x;)Ax and the

approximation for A is given by

ARR, = f(x)DAx+ f(xp)Ax+ -+ + f(xp)Ax (1.7)

= .Zl f(x)Ax.

The notation R, indicates this is a right-endpoint approximation for A (Figure 1.4).
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Right

/ endpoints

P

a=xg X,_1 b=x, x
Figure 1.4 In the right-endpoint approximation of area under
a curve, the height of each rectangle is determined by the
function value at the right of each subinterval. Note that the

right-endpoint approximation differs from the left-endpoint
approximation in Figure 1.3.

2
The graphs in Figure 1.5 represent the curve f(x) = XT In graph (a) we divide the region represented by the interval

[0, 3] into six subintervals, each of width 0.5. Thus, Ax = 0.5. We then form six rectangles by drawing vertical lines
perpendicular to x; _, the left endpoint of each subinterval. We determine the height of each rectangle by calculating
fx;_y) for i=1,2,3,4,5, 6. The intervals are [0, 0.5], [0.5, 1], [1, 1.5}, [1.5, 2], [2, 2.5], [2.5, 3]. We find the area
of each rectangle by multiplying the height by the width. Then, the sum of the rectangular areas approximates the area
between f(x) and the x-axis. When the left endpoints are used to calculate height, we have a left-endpoint approximation.
Thus,

6
ArLg = z O Z DAx = f(xg)Ax + f(xDAx + f(xp)Ax + f(x3)Ax + f(x)Ax + f(x5)Ax
i=1
= f(0)0.5 + £(0.5)0.5 + f(1)0.5 + f(1.5)0.5 + £(2)0.5 + f(2.5)0.5
= (0)0.5 + (0.125)0.5 + (0.5)0.5 + (1.125)0.5 + (2)0.5 + (3.125)0.5

=04 0.06254+0.25 + 0.5625 + 1 + 1.5625

= 3.4375.
yi y = f(x) i y = f(x)
4+ 4
2+ 2
T o Pl
1 —— - : - : -
1 2 3 x 1 2 3 X
Xo X1 X2 X3 Xy Xs Xg Xo X1 Xo Xz X3 X5 Xg
(@) (b)

Figure 1.5 Methods of approximating the area under a curve by using (a) the left endpoints
and (b) the right endpoints.

In Figure 1.5(b), we draw vertical lines perpendicular to x; such that x; is the right endpoint of each subinterval, and
calculate f(x;) for i=1, 2, 3, 4, 5, 6. We multiply each f(x;) by Ax to find the rectangular areas, and then add them.

This is a right-endpoint approximation of the area under f(x). Thus,
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6
AR Rg = Z FOx)Ax = f(xDAx + fx)Ax + f(x3)Ax + f(x)Ax + f(x5)Ax + f(xg)Ax

i=1
= £(0.5)0.5 + f(1)0.5 + f(1.5)0.5 + £(2)0.5 + f(2.5)0.5 + £(3)0.5
= (0.125)0.5 + (0.5)0.5 + (1.125)0.5 + (2)0.5 + (3.125)0.5 + (4.5)0.5
=0.0625 + 0.25 + 0.5625 + 1 + 1.5625 + 2.25
= 5.6875.

Example 1.4

Approximating the Area Under a Curve
Use both left-endpoint and right-endpoint approximations to approximate the area under the curve of f(x) = x?

on the interval [0, 2]; use n = 4.

Solution

First, divide the interval [0, 2] into n equal subintervals. Using n = 4, Ax = (24;0) = 0.5. This is the width of

each rectangle. The intervals [0, 0.5}, [0.5, 1}, [1, 1.5], [1.5, 2] are shown in Figure 1.6. Using a left-endpoint
approximation, the heights are f(0) =0, f(0.5) =0.25, f(1) =1, f(1.5) = 2.25. Then,

Ly = f(xg)Ax+ f(xDAx + f(xo)Ax + f(xz)Ax
=0(0.5) + 0.25(0.5) + 1(0.5) + 2.25(0.5)
=1.75.

yi
f(x) = X2

ﬁ AX AX

— T h\f_al _\,_J -
05 1 15 2 X
Figure 1.6 The graph shows the left-endpoint approximation

of the area under f(x) = %2 from 0 to 2.

The right-endpoint approximation is shown in Figure 1.7. The intervals are the same, Ax = 0.5, but now use
the right endpoint to calculate the height of the rectangles. We have
Ry = f(xpPDAx+ f(xy)Ax + f(x3)Ax + f(xy)Ax
= 0.25(0.5) + 1(0.5) + 2.25(0.5) + 4(0.5)
=3.75.
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¥
44
f(x)| = x2
2_
AX AX AX
| G| N
05 1 15 2 N

Figure 1.7 The graph shows the right-endpoint approximation
of the area under f(x) = x2 from 0 to 2.

The left-endpoint approximation is 1.75; the right-endpoint approximation is 3.75.

@ 1.4 gketch left-endpoint and right-endpoint approximations for f(x) =% on [1,2]; use n=4.

Approximate the area using both methods.

Looking at Figure 1.5 and the graphs in Example 1.4, we can see that when we use a small number of intervals, neither
the left-endpoint approximation nor the right-endpoint approximation is a particularly accurate estimate of the area under
the curve. However, it seems logical that if we increase the number of points in our partition, our estimate of A will improve.
We will have more rectangles, but each rectangle will be thinner, so we will be able to fit the rectangles to the curve more
precisely.

We can demonstrate the improved approximation obtained through smaller intervals with an example. Let’s explore the idea
of increasing n, first in a left-endpoint approximation with four rectangles, then eight rectangles, and finally 32 rectangles.
Then, let’s do the same thing in a right-endpoint approximation, using the same sets of intervals, of the same curved region.

Figure 1.8 shows the area of the region under the curve f(x) = (x — 1)3 + 4 on the interval [0, 2] using a left-endpoint

approximation where n = 4. The width of each rectangle is

Ax=2=0

2-0_1
4 2°
The area is approximated by the summed areas of the rectangles, or

Ly = f(0)(0.5) + f(0.5)(0.5) + f(1)(0.5) + f(1.5)0.5

=17.5.
Yi

y =)

AX | AX | AX | AX

a=/x0 X1 Xo Xz b=x%

Figure 1.8 With a left-endpoint approximation and dividing
the region from a to b into four equal intervals, the area under
the curve is approximately equal to the sum of the areas of the
rectangles.
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Figure 1.9 shows the same curve divided into eight subintervals. Comparing the graph with four rectangles in Figure 1.8
with this graph with eight rectangles, we can see there appears to be less white space under the curve when n = 8. This

white space is area under the curve we are unable to include using our approximation. The area of the rectangles is

Lg = f(0)(0.25) + f(0.25)(0.25) + f(0.5)(0.25) + f(0.75)(0.25)
+£(1)(0.25) + £(1.25)(0.25) + f(1.5)(0.25) + f(1.75)(0.25)
4!

-
[ |

ey=x0 X1 Xp X3 X4 X5 Xg X7 b=xgX

Figure 1.9 The region under the curve is divided into n = 8

rectangular areas of equal width for a left-endpoint
approximation.

The graph in Figure 1.10 shows the same function with 32 rectangles inscribed under the curve. There appears to be little
white space left. The area occupied by the rectangles is

L3, = £(0)(0.0625) + f(0.0625)(0.0625) + £(0.125)(0.0625) + --- + f(1.9375)(0.0625)

= 7.9375.
yi
y= f(Xl/
7: XU \ ;(
X31 b=Xa3p

Figure 1.10 Here, 32 rectangles are inscribed under the curve
for a left-endpoint approximation.

We can carry out a similar process for the right-endpoint approximation method. A right-endpoint approximation of the
same curve, using four rectangles (Figure 1.11), yields an area

R, = f(0.5)(0.5) + f(1)(0.5) + f(1.5)(0.5) + f(2)(0.5)
= 8.5.
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)

/) ax x| ax

a:/XO X1 Xo X3 Xy X

Figure 1.11 Now we divide the area under the curve into four
equal subintervals for a right-endpoint approximation.

Dividing the region over the interval [0, 2] into eight rectangles results in Ax = 23%0 = 0.25. The graph is shown in

Figure 1.12. The area is

Rg = f(0.25)(0.25) + £(0.5)(0.25) + f(0.75)(0.25) + f(1)(0.25)
+£(1.25)(0.25) + £(1.5)(0.25) + f(1.75)(0.25) + £(2)(0.25)
= 8.25.

4 y = )

/

a/éxo X1 Xz X3 Xq X5 Xg X7 b=xgX

Figure 1.12 Here we use right-endpoint approximation for a
region divided into eight equal subintervals.

Last, the right-endpoint approximation with n = 32 is close to the actual area (Figure 1.13). The area is approximately

R3, = £(0.0625)(0.0625) + f(0.125)(0.0625) + f(0.1875)(0.0625) + --- + f(2)(0.0625)
= 8.0625.

yi y = f(x)
7/

/

= X ) X
7/ 0 b = xz

X31

Figure 1.13 The region is divided into 32 equal subintervals
for a right-endpoint approximation.

Based on these figures and calculations, it appears we are on the right track; the rectangles appear to approximate the area
under the curve better as n gets larger. Furthermore, as n increases, both the left-endpoint and right-endpoint approximations
appear to approach an area of 8 square units. Table 1.1 shows a numerical comparison of the left- and right-endpoint
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methods. The idea that the approximations of the area under the curve get better and better as n gets larger and larger is very
important, and we now explore this idea in more detail.

Values of n Approximate Area L, Approximate Area R,
n=4 7.5 8.5

n=38 7.75 8.25

n=32 7.94 8.06

Table 1.1 Converging Values of Left- and Right-Endpoint Approximations
as n Increases

Forming Riemann Sums

So far we have been using rectangles to approximate the area under a curve. The heights of these rectangles have been
determined by evaluating the function at either the right or left endpoints of the subinterval [x;_, x;]. In reality, there is
no reason to restrict evaluation of the function to one of these two points only. We could evaluate the function at any point
¢; in the subinterval [x;_, x;], and use f(x}" ) as the height of our rectangle. This gives us an estimate for the area of

the form
n
A Z flet )Ax.
i=1

A sum of this form is called a Riemann sum, named for the 19th-century mathematician Bernhard Riemann, who developed
the idea.

Definition

Let f(x) be defined on a closed interval [a, b] and let P be a regular partition of [a, b]. Let Ax be the width of each

subinterval [x; 4, x;] and for each i, let x¥ be any pointin [x;_{, x;]. A Riemann sum is defined for f(x) as

Recall that with the left- and right-endpoint approximations, the estimates seem to get better and better as n get larger and
larger. The same thing happens with Riemann sums. Riemann sums give better approximations for larger values of n. We
are now ready to define the area under a curve in terms of Riemann sums.

Definition

n
Let f(x) be a continuous, nonnegative function on an interval [a, b], and let Z f (x;“ )Ax be a Riemann sum for
i=1

f(x). Then, the area under the curve y = f(x) on [a, b] is given by

n
A= nli)mooigl flxF )Ax.
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See a graphical demonstration (http://lwww.openstaxcollege.org/l/20_riemannsums) of the
construction of a Riemann sum.

Some subtleties here are worth discussing. First, note that taking the limit of a sum is a little different from taking the limit
of a function f(x) as x goes to infinity. Limits of sums are discussed in detail in the chapter on Sequences and Series;

however, for now we can assume that the computational techniques we used to compute limits of functions can also be used
to calculate limits of sums.

Second, we must consider what to do if the expression converges to different limits for different choices of {x;" }

Fortunately, this does not happen. Although the proof is beyond the scope of this text, it can be shown that if f(x) is

n
continuous on the closed interval [a, b], then nli)moo Z f (x;" )Ax exists and is unique (in other words, it does not depend
i=1

on the choice of {x;“ }).

We look at some examples shortly. But, before we do, let’s take a moment and talk about some specific choices for {x;" }

Although any choice for {x;“ } gives us an estimate of the area under the curve, we don’t necessarily know whether that

estimate is too high (overestimate) or too low (underestimate). If it is important to know whether our estimate is high or

low, we can select our value for {x;k } to guarantee one result or the other.

If we want an overestimate, for example, we can choose {xj‘ } such that for i =1, 2, 3,...,n, f(x;." )2 f(x) for all

X € [x; _, x;]. In other words, we choose {x;“ } sothatfor i=1, 2, 3,...,n, f(xj‘ ) is the maximum function value on

n

the interval [x;_, x;]. If we select {x;" } in this way, then the Riemann sum Z f(xj‘ )Ax is called an upper sum.
i=1

Similarly, if we want an underestimate, we can choose {x?‘ } sothatfor i =1, 2, 3,...,n, f(x?‘ ) is the minimum function
value on the interval [x; _, x;]. In this case, the associated Riemann sum is called a lower sum. Note that if f(x) is either

increasing or decreasing throughout the interval [a, b], then the maximum and minimum values of the function occur at the

endpoints of the subintervals, so the upper and lower sums are just the same as the left- and right-endpoint approximations.

Example 1.5

Finding Lower and Upper Sums
Find a lower sum for f(x) =10 — x2 on [1, 2]; let n = 4 subintervals.

Solution

With n=4 over the interval [1, 2], Ax = % We can list the intervals as

[1, 1.25], [1.25, 1.5], [1.5, 1.75], [1.75, 2]. Because the function is decreasing over the interval [1, 2], Figure

1.14 shows that a lower sum is obtained by using the right endpoints.
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f(x) = 10 — x2

—]:9_\
-
51 \

1 2 x
a=Xg Xy Xp Xz Xa

Figure 1.14 The graph of f(x) =10 — x? is set up fora

right-endpoint approximation of the area bounded by the curve
and the x-axis on [1, 2], and it shows a lower sum.

The Riemann sum is

4
Y (10-2%)0.25) =025[10 - (1.25)2 + 10 — (1.5)? + 10 - (1.75)> + 10 — (2)°]
k=1
= 0.25[8.4375 + 7.75 + 6.9375 + 6]
=7.28.

The area of 7.28 is a lower sum and an underestimate.

@ L5 . Findan upper sum for f(x) =10 —x2 on [1, 2]; let n = 4.

b. Sketch the approximation.

Example 1.6

Finding Lower and Upper Sums for f(x) = sinx

Find a lower sum for f(x) = sinx over the interval |a, b] = [O, E]; let n =6.

2

Solution
Let’s first look at the graph in Figure 1.15 to get a better idea of the area of interest.
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@ 16 Using the function f(x) = sinx over the interval [O, 0l
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Yi

11 y =sinx

X

;11115_1*1 1T\
12 6 4 3 12 2

/2 I

Figure 1.15 The graph of y = sinx is divided into six regions: Ax = 3 17

- zl|lz z| |z z| |z z]| [z 5z Sz & = sinx i
The intervals are [O, 12], [12, 6]’ [6’ 4], [4, 3], [3, 12], and [12, 2]. Note that f(x) =sinx is
727 , so a left-endpoint approximation gives us the lower sum. A left-endpoint

|

5
approximation is the Riemann sum Z sinx; (1—”2) We have
i=0

increasing on the interval [O, =

A =m0l ) )+ sl ) - o3

= 0.863.

Z ], find an upper sum; let n = 6.

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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1.1 EXERCISES

1. State whether the given sums are equal or unequal.

10 10
a. Ziand Zk
i=1 k=1
10
b. Zlad 2(1—5)
i=1
10 9
C. Zl(i—l)and Z(j+1)j
i=1 j=0
10
d, Z(z—l)and Z( k)
= k=1

In the following exercises, use the rules for sums of powers
of integers to compute the sums.

1

(=)

1]
W

—_
(=}

1]
w

100 100

Suppose that Z a;=15 and Z b;=-12. In the
i=1 i=1

following exercises, compute the sums.

100

4. (ai + bl)
i=1
100

5 (ai - bl)
i=1
100

6 (3a; —4b))
i=1
100

7. (5a;+4b;)

In the following exercises, use summation properties and
formulas to rewrite and evaluate the sums.

20
D 100(k> - 5k + 1)
k=1
50
0. X (17-2))
I=

21

20
0. Y (-10))
j=11
25
1. Y [@k? - 100k]
k=1

Let L, denote the left-endpoint sum using n subintervals
and let R, denote the corresponding right-endpoint sum.

In the following exercises, compute the indicated left and
right sums for the given functions on the indicated interval.

12. Lyfor f(x) = on [2, 3]

13. Ry for g(x) = cos(zx) on [0, 1]

14. Lgfor f(x) =m on [2, 5]
15. Rgfor f(x) =m on [2, 5]
16. Ry for 21 n [-2, 2]
x“+1
1
17. Ly for n [—2, 2]
! K2+

18. Ryfor x2—2x+1 on [0, 2]

19. Lgfor x> —2x+1 on [0, 2]

20. Compute the left and right Riemann sums—L,4 and Ry,
respectively—for f(x) = (2 —[xl) on [-2, 2]. Compute

their average value and compare it with the area under the
graph of f.

21. Compute the left and right Riemann sums—Lg and
Rg, respectively—for f(x) =3 —13—x) on [0, 6].
Compute their average value and compare it with the area
under the graph of f.

22. Compute the left and right Riemann sums—L, and
= m on [-2,2] and

Ry, respectively—for f(x)

compare their values.

23. Compute the left and right Riemann sums—Lg and

Rg, respectively—for f(x) =19 — (x — 3)2 on [0, 6] and

compare their values.

Express the following endpoint sums in sigma notation but
do not evaluate them.
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24. Ly for f(x) = x% on [1, 2]

25. Ligfor f(x)=V4—x% on [-2, 2]
26. Ry for f(x) =sinx on [0, 7]
27. Ry for Inx on [1, €]

In the following exercises, graph the function then use a
calculator or a computer program to evaluate the following
left and right endpoint sums. Is the area under the curve
between the left and right endpoint sums?

28. [T1Lygp and Ry for y = x> —3x+ 1 on the interval
[_1’ 1]

29. [T1]Lqgp and Ryg for y = x2 on the interval [0, 1]

30. [T]Lspand Ry for y = xz;ll on the interval [2, 4]

31. [T] Lygg and Ry for y = x> on the interval [-1, 1]

|

32. [T] Lsp and Ry, for y = tan(x) on the interval [O,

ENESY

33. [T]Lygoand Rygo for y = ¢ on the interval [—1, 1]

34. Let t; denote the time that it took Tejay van Garteren

to ride the jth stage of the Tour de France in 2014. If there
21

were a total of 21 stages, interpret Z 1.
Jj=1

35. Let r; denote the total rainfall in Portland on the jth

31

day of the year in 2009. Interpret Z r
i=1

36. Let d I denote the hours of daylight and I denote the

increase in the hours of daylight from day j— 1 to day j

in Fargo, North Dakota, on the jth day of the year. Interpret
365

dy+ ), 5.
i=2
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37. To help get in shape, Joe gets a new pair of running

shoes. If Joe runs 1 mi each day in week 1 and adds % mi
to his daily routine each week, what is the total mileage on
Joe’s shoes after 25 weeks?

38. The following table gives approximate values of the
average annual atmospheric rate of increase in carbon
dioxide (CO,) each decade since 1960, in parts per million
(ppm). Estimate the total increase in atmospheric CO,
between 1964 and 2013.

Decade Ppm/y

1964-1973 1.07

1974-1983 1.34

1984-1993 1.40

1994-2003 1.87

2004-2013 2.07

Table 1.2 Average Annual
Atmospheric CO,

Increase,

1964-2013 Source:
http:/lwww.esrl.noaa.gov/
gmdiccggltrendsl.
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39. The following table gives the approximate increase in 40. The following table gives the approximate increase in

sea level in inches over 20 years starting in the given year. dollars in the average price of a gallon of gas per decade
Estimate the net change in mean sea level from 1870 to since 1950. If the average price of a gallon of gas in 2010
2010. was $2.60, what was the average price of a gallon of gas in
Starting Year 20-Year Change 1950°
Starting Year 10-Year Change
1870 0.3
1950 0.03
1890 1.5
1960 0.05
1910 0.2
1970 0.86
1930 2.8
1980 -0.03
1950 0.7
1990 0.29
1970 1.1
2000 1.12
1990 1.5 .
Table 1.4 Approximate 10-Year Gas
] Price Increases, 1950-2000 Source:
Table 1.3 ApprOXImate 20-Year Sea http:”epb_lbl_govlhomepagesl
Level Increases, 1870-1990 Source: Rick_Diamond/docs/
http:/llink.springer.com/article/ Ibni55011-trends.pdf.

10.1007%2Fs10712-011-9119-1
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41. The following table gives the percent growth of the
U.S. population beginning in July of the year indicated. If
the U.S. population was 281,421,906 in July 2000, estimate
the U.S. population in July 2010.

Year % Change/Year
2000 1.12
2001 0.99
2002 0.93
2003 0.86
2004 0.93
2005 0.93
2006 0.97
2007 0.96
2008 0.95
2009 0.88

Table 1.5 Annual Percentage
Growth of U.S. Population,
2000-2009 Source:
http:/lwww.census.gov/
popesti/data.

(Hint: To obtain the population in July 2001, multiply the
population in July 2000 by 1.0112 to get 284,573,831.)

In the following exercises, estimate the areas under the
curves by computing the left Riemann sums, Lg.

42.

O

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2

Chapter 1 | Integration

43.

o<

44,

45.

O 1 2 3 4 5 6 7 8%

46. [T] Use a computer algebra system to compute the
Riemann sum, Ly, for N =10, 30,50 for

fx)=V1=x% on [-1, 1].
47. [T] Use a computer algebra system to compute the

Riemann sum, Ly, for N =10, 30, 50 for

f(x) = —L— on [~1, 1].
1+x2
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48. [T] Use a computer algebra system to compute the
Riemann sum, Ly, for N = 10, 30, 50 for f(x) = sin’x

on [0, 2z]. Compare these estimates with 7.

In the following exercises, use a calculator or a computer
program to evaluate the endpoint sums Ry and Ly for
N =1,10,100. How do these estimates compare with the

exact answers, which you can find via geometry?

49. [T] y = cos(zx) on the interval [0, 1]
50. [T] y = 3x+ 2 onthe interval [3, 5]

In the following exercises, use a calculator or a computer
program to evaluate the endpoint sums Ry and Ly for
N =1,10,100.

51. [T] y= x*—=5x2+4 on the interval [-2, 2],

which has an exact area of %

52. [T] y =Inx on the interval [1, 2],

exact area of 2In(2) — 1

which has an

53. Explain why, if f(a) >0 and f is increasing on
la, b], that the left endpoint estimate is a lower bound for

the area below the graph of fon [a, b].

54. Explain why, if f(b) >0 and f is decreasing on
la, b], that the left endpoint estimate is an upper bound for

the area below the graph of fon [a, b].

55. Show that, in general,
Ry—Ly=(b—ax O -1@

N
56. Explain why, if f is increasing on [a, b], the error

between either Ly or Ry and the area A below the graph of

NIGEIG)

fis at most (b —

25

57. For each of the three graphs:
a. Obtain a lower bound L(A) for the area enclosed

by the curve by adding the areas of the squares
enclosed completely by the curve.
b. Obtain an upper bound U(A) for the area by

adding to L(A) the areas B(A) of the squares

enclosed partially by the curve.
Yi

Graph 3

58. In the previous exercise, explain why L(A) gets no
smaller while U(A) gets no larger as the squares are

subdivided into four boxes of equal area.
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59. A unit circle is made up of n wedges equivalent to the

inner wedge in the figure. The base of the inner triangle

is 1 unit and its height is sin(%). The base of the outer

triangle is B = cos(Z)+ sin(Z)an(Z) and the height is
H=B sin(zn—”). Use this information to argue that the area

of a unit circle is equal to 7.
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