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1. INTRODUCTION.

Newton’s method is a classical numerical method to solve a system of nonlinear equations
f:E—F

with E and F two Euclidean spaces or more generally two Banach spaces. If z € E is an approximation
of a zero of this system then, Newton’s method updates this approximation by linearizing the equation
f(y) = 0 around z so that

f(z)+ Df(z)(y — =) = 0.

When D f(z) is an isomorphism we obtain the classical Newton’s iterate

y = Ny(z) =z — Df(z) "' f(2).

When E and F are two Euclidean spaces and when Df(z) is not an isomorphism we choose its
Moore-Penrose inverse Df(z) instead of its classical inverse:

y = N¢(z) =z — Df (z)'f ().
We recall that the Moore-Penrose inverse of a linear operator
A:E—F

is the composition of two maps : AT = B oIl 4 where Iy, 4 is the orthogonal projection in F onto
Im A and B is the right inverse of A whose image is the orthogonal complement of Ker A in E i.e.
the inverse of the restriction
Alker 4yt : (Ker At - Im A

We have AT = (A*A)7'A* when A is injective, AT = A*(A4A*)™' when A is surjective, where A*
denotes the adjoint of A. Notice that ATA = Il(ker 4)+ and AAT =Ty a.

For underdetermined systems, when Df(z) is surjective, Df(z)" is injective in F and hence the
zeros of f(x) corresponds to the fixed points of the Newton operator

Nj(z) =2 — Df(z)"f (x).

The case of overdetermined systems is completely different. This iteration has been introduced for
the first time by Gauss in 1809 [6] and, for this reason, it is called Newton-Gauss iteration. When
Df(x) is injective, the fixed points of Ny(x) do not necessarily correspond to the zeros of f but to
the least-square solutions of f(z) = 0, i.e. to the stationary points of F(z) = ||f(z)||?. In other words
N¢(z) = z if and only if D(||f(z)||?) = 0.

In this paper, our aim is to study the properties of Newton’s iteration for analytic systems of equa-
tions with constant rank derivatives. This case generalizes both the underdetermined case (Rank D f(z)
Dim F) and the overdetermined case of (Rank Df(z) = Dim E). It has been considered for the first
time by Ben-Israel [2].

We consider an analytic function f : E — F between two Euclidean spaces. We let n = Dim E and
m = Dim F. We also consider the case of a function f defined in an open set U C E but by abuse of
notation we continue to write f : E — F.
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As in the injective-overdetermined case, the fixed points of Newton’s operator do not necessarily
correspond to the zeros of f but to the least square solutions of this system:

Proposition 1. The following statements are equivalent :
1. N¢(z) ==,

Df(z)!f(z) =0,

Df(xz)"f(z) =0,

f(z) € Im Df(z)*,

DF(z) = 0 with F(z) = ||f(z)]?.

U o W N

The proof is easy and left to the reader. O

There are two points of view to analyze the convergence properties for Newton’s method: Kan-
torovich like theorems and Smale’s alpha-theory. Let © € E be given. Under which hypothesis does
the sequence

Tr1 = Ny(zg), 0 = =,

converges to a zero £ of f7

Kantorovich gives an answer in terms of the behavior of f in a neighborhood of x with a weak
regularity assumption, say f is C?. See Ostrowski [12] or Ortega-Rheinboldt [11].

Alpha-theory, which was introduced by Kim in [8], [9] for one variable polynomial equations and by
Smale for general systems of equations in [18], gives an answer in terms of three invariants.

Ol(f,i[)) = ﬁ(fa x)’Y(fa iI")
B(f,x) = |Df(z) ' f(2)|

—1Dkf(33)
k!

1
k=1

v(f,x) = sup ||Df(x)

k>2

which only depend on the derivatives D¥ f(z) at the given starting point z. Here a stronger regularity
assumption is made: f is an analytic system of equations.

The main feature of Newton’s iteration is its quadratic convergence to the zeros of f. Alpha-theory
gives the size of the basin of attraction around these zeros in terms of the invariant y(f,z). We have :

Theorem 1. (Smale) When £ is a zero of f and Df(€) is an isomorphism then, for any z € E
satisfying
3— VT

5

lz = &lly(f,8) <

1. the sequence x1 = Ny(xy), o = x is well defined,
2. for any k >0,

1

2k—1
o€l < (3)  A.0)



This theorem is extended by Shub and Smale in [14] to the case of underdetermined systems of
equations with surjective derivatives. They introduce the following invariants,

a(fa LL‘) = ﬁ(fa x)’Y(fa iI")
B(f,z) = |IDf(z) f(z)|

DEf(x
Df(a) L)

when D f(x) is onto and oo otherwise. They give the following:

kll
v(f,z) = sup
k>2

?

Theorem 2. (Shub-Smale) Let f : R™ — R™ have zero as a regular value and define

= max ,
Y gef_l(o)v(f £)

Then there is a universal constant C so that if d(z, f 1(0)) < 5 then

1. the sequence x1 = Ny(xy), 0 = x, is well defined,
2. it converges to a zero of & of f and

2k—1
o€l < (3)  807.0)

The case of injective-overdetermined systems is slightly different. The main feature of Newton-Gauss
iteration is a quadratic convergence to the zeros of f and a linear convergence to certain least-square
solutions. Kantorovich like theorems are given in Ben-Israel [2], Dennis-Schnabel [5] and Seber-Wild
[13]. Alpha-theory is studied by Dedieu-Shub in [4]. They introduce the following invariants,

Oél(f,ﬂ?) = Bl(fax)'YI(fa .’L')
Bi(fye) = |Df @) 11 (=)l
D*f(z)

1
k—1
k! ) ’

which differ slightly from «, 8 and v introduced in the undetermined case. They prove the following

n(f,2) = sup (an(w)*n
£>2

theorems.
Theorem 3. (Dedieu-Shub) Let x and & € E be such that f(§) =0, Df(£) is injective and

3T
o

v =z —§&|In(f &) <

Then Newton’s sequence xy = Nj(ck) (z) satisfies

2k —1
loe-el<(3)  llo—el



Theorem 4. (Dedieu-Shub) Let z and ¢ € E satisfying Df (€)1 f(€) =0, Df(&) injective and

V2

v=llz—Eln(f,€) <1- .

1t
_ v+ VE2 e (£,6)

A
1 —4v 4 202

<1

then Newton’s sequence satisfies
lz, — &Il < Xl — €]I-

Let us now come back to our problem: We recall that
f:E—F
is an analytic function with Rank D f(z) < r for any x € E. We let

V=f10)={¢€E : f(¢) =0}
and
Vis={¢€€E : Df(&)If(€) =0}

V is the set of zeros of f and Vi, the set of least square solutions. See Proposition 1. The following
proposition describes the smooth part of V:

Proposition 2. Let £ € V with Rank Df(¢) =r. Then

1. For any z € E with ||z — &||71(f,€&) <1— @ one has Rank Df(z) =,

2.VNB s a submanifold in E with Dim =n — r.

(1-2)/n(f:£) ©)

Proof. The first assertion is proved in Lemma, 1 below, the second assertion is a classical consequence
of the first one, see Helgason [7], Chap. I, Sect. 15.2. O

We do not have a similar result for Vj,: if £ € Vi with Rank Df(£) = r is Vjs a submanifold around
&7

In order to state our next result we introduce some more notation. Let 9(u) = 1 — 4u + 2u?. Tt is
decreasing from 1 to 0 when 0 < u < 1— @ IIg, denotes the orthogonal projection onto the subspace

E; C E. For any linear operator L : E — F,
K (L) = ||L| 1LY
denotes its condition number and ||L|| the operator norm. We also use the following function

1 2—v  1++/56(1—-2v)%(2-v) 2v — v?
M) = G+ e (K G
defined for 0 <v < 1— %2 and K > 0 and

145 (1—v)%(2—0) _|_9(04)

o2 P(v)? a’

S

B(v,«)



with

(1+V5)(1 + 2a)
f(a) =« <2+ (1= 20) >

defined for 0 < v < 1— @ and 0 < a < % When & is a zero of f with Rank Df(&) = r, then
for any zy € E in a neighborhood of £, Newton’s sequence starting at xg converges quadratically to a
zero of f, but not necessarily equal to &. More precisely we prove here the following: let

yr= _max _yi(f,§&)

§€BR(§0)OV
Ap=_max A(llz — & (f,&), K(Df(£)))-
§€BR(§0)DV
z€BR (&)

Theorem 5. Let & € E, such that f(&) = 0 and Rank Df(&) = r. Let R > 0 satisfying the
condition RArvyr < %, with yr and Ag as above. Let xo € Bap(&o) such that {y = projyzg i.e. & is
3

the point in V the closest to xo. Then Newton’s sequence zy = N*) () is contained in Br(&) and

d(zs, V) < (§>2k_1d(x0,V).

As in the case of overdetermined systems with injective derivatives, the convergence of Newton’s
sequence to the set of least square solutions fails to be quadratic. We have

Theorem 6. For &) € Vs with Rank Df(§) =7r and 0 < R< 1 — g, define
A= max A([UvK(Df(f)))lU+B(v7a1(f7£))al(faf)7

£EBR(§0)NV,
z€Bg(&)

with v = ||‘T - 6“71(.]076); and

o= max  oq(f, ).
' eeBR(E0) Vi 1(£+¢)

Let us suppose that Br(&o) N Vis is a smooth submanifold in E, that A < 1 and 2a; < 1. Then, for

any xo € E such that
1—-A
70— &0 € (TeyVis) > and ||z — &l < — =R,

Newton’s sequence x, = N*®)(z4) is contained in Bg(&) and

Notice the following facts. The hypothesis in Theorem 6 is satisfied in a suitable neighborhood of
&o € Vs when Vi, is smooth around &y and a;(f, &) small enough i.e. when limp_,o A < 1.

The invariant o (f, &) is small when the residue function F(&y) = || f(&)||? is itself small.

The nonconvergence of Newton’s sequence to least square solutions with large residues is a well
known fact, see Dennis-Schnabel [5] and Dedieu-Shub [4].

When ai(f,&) is small then £ is a strict local minimum for the residue function over &, +
(kerDf (&))" . More precisely
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Proposition 3. For any & € Vj; with Rank Df(¢) = r and ay1(f,€) < % we have DF(§) = 0 and
D2F(&)(2,2) > 0 for any © € Ker Df(£)*, & # 0.

In the following, under a simple assumption on f at xy we prove the existence of a least square
solution £ for f in a neighborhood of zy and the linear convergence of Newton’s sequence N J’f(xo) to &.

Theorem 7. Suppose
1

i (f,20) K (Df (a0)) < 5.

Then Newton’s sequence 1 = Ny(zy) satisfies

1 k
e =l < (3) llor = zal.
This sequence converges to a least square solution & of f :
Df(€)f(€) = 0 and ||¢ — zo|| < 2||z1 — o).

We close this section with some examples. Examples of “constant rank” systems of equations
are given by distance geometry problems: an important tool in determining the three-dimensional
structure of a molecule. Distance geometry problems are concerned with finding positions z1,... ,z,
of n atoms in R? such that

lzi — =5l = 6 5), (4,7) € S,
where S is a subset of the atom pairs and d(; ;) is the given distance between atoms ¢ and j. When
all these distances are given, this system has 3n unknowns and n(n — 1)/2 equations. The dimension
of the solution set, when it is nonempty, is at least 6 because these equations are invariant under
translations and orthogonal transformations. Similar examples arise from the protein folding problem.
For example the Lennard-Jones problem is to find the minimum energy structure of a cluster of n
identical atoms using the Lennard-Jones potential energy:

min Ty — T

e ;p(ll i — j]))
with p(r) = r~12—2r 6. Typically n can take large values: 10 000 for example. This global optimization
problem is still unsolved. We can see this problem as a nonlinear least square problem related to the
system of equations

(p(llzi — =) + 1)V2 =0, i < j.
Such a system enters in the category of “constant rank” systems. A good reference for such problems
is the survey paper by A. Neumaier [10].



2. PROOFS.

In this section we give the proofs of theorems 5, 6 and 7. We begin by a series of lemmas.

Lemma 1. Let z,y € E with Rank Df(y) < Rank Df(z) =7 and u = ||z — y||n1(f,z) <1 — @
Then

1. Df(y) and iy, pyz)Df(y) have rank r,
2. Tiker pf(z) + Df(z)IDf(y) is non-singular.

-1 —u)?
3. || (Mker @) + Df(@)IDf(y))~ || < (ip(u)) :

Proof. Df(z)T(Df(x) —Df(y)) = —Df(ac)Jr Zk22 ka,f!(w) (y — ac)k_1 so that

1D @) (Df &) = DIWI < =gz ~ 1< L

By a classical linear algebra argument
idg — Df(2)"(Df(z) = Df (%)) = Mker py() + Df () D (y)
is invertible and its inverse is bounded by
1 (1—u)?
1= (g — D %(w)

This proves 2 and 3. Moreover

i pj) DS (y) = Df (@)(Uker py@) + DI (2) D (y)) = (Rank r) o (nonsingular)
has Rank r. Thus Rank Df(y) > Rank Iy, pf)Df(y) =r and we are done. O

The following linear algebra lemmas will be useful. Let A and B be m x n real or complex matrices
with non-zero singular values 01 > -+ >0, >0and 73 > -+ > 7. > 0. Thus Rank A = Rank B =r.
Let us denote by ||A|| the usual spectral norm so that

IAll = o1 and [|AT]| = 0"
We have (see Stewart-Sun [19], Chap. IV, Theorem 4-11):
Lemma 2. (Mirsky)
max |o; — 7| < ||A — B

We also need bounds for || A" — Bf||. The following lemma is valid in our context (see Stewart-Sun
[19], Chap. III, Theorem 3.8):

Lemma 3. (Wedin)

14T - Bf|l < LiVs max(||AT||%, | BT|*)| 4 — BJ.
2 ?



9

The constant (1 4 /5)/2 appearing in Lemma 3 may be improved according to the values of m, n
and the ranks of A and B. The precise staatement is given in [19], Chapter III, Theorem 3. 9. The
case of Frobenius norm and arbitrary matix norms are considered.

The following lemma generalizes a well-known result for square and non-singular matrices. It is
probably well-known but we were not able to find it in the literature.

Lemma 4. Let A and B two m x n matrices with Rank (A + B) < Rank A =r and ||Af|| ||B|| < 1.

Then
JAT|

1—[JAT| B
Proof. Let us denote by o1 > --- > 0, > 0 the non-zero singular values of A and by py > --- > p, >0

Rank (A + B) =1 and ||(A + B){|| <

(p = min(m,n)) the singular values of A + B. By Lemma 2
oy or —prl < AT |B] < 1

so that p, > 0 and consequently Rank (A + B) > r. Since Rank (A + B) < r by the hypothesis, we
have proved the equality. The nonzero singular values of A + B are

p1 =2 pr>0.
We have ) m
oy A

I(A+B)Y| = p,t = —L—- <

T 1— o T 1| AT ||B]]
and we are done. O
Lemma 5. Let z,y € E with Rank Df(y) < Rank Df(z) = r and v = ||z — y||n1(f,z) < 1 — @
Then

L |IDf(y) - Df ()| < |Df ()|~ 25y,

2. |Df(y)] < |Df() 7 (K(Df(s) + Bk ),
3. IDf @) < S IDF ()],

4. |Df (@)t - < )Tn < L8 o Cuvd) | Df ()]

Proof. Df(y) = Df(z) + Yysy k2L (y — )41 s0 that
1
_ < -1 _
D7) - DSl < 1271 (=g —1)
and this proves 1) and 2). Assertion 3) comes from Lemma 4 with A = D f(z) and B = D f(y)—Df(z).
We have Rank (A + B) = r by Lemma 1

t t -1 20— u?
AT Bl < [[Df(z)"]| x [ Df(z)"]] e <1
by Lemma 5.1 and because u <1 — @ Thus, by Lemma 4,
Df 1—u)?
Ipff) < IPT@I_ A=) oy

-2t )
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The last assetion is a consequence of Lemma 3, Lemma 5.1 and Lemma 5.3.

1+5(1—u) 2u — u?
1Df ()" = Df (@) < =573 "

This achieves the proof of Lemma, 5. O

4
1D f ()" 171D F ()"~

Lemma 6. Let & and z € E with Df(€)Tf(¢) = 0, Rank Df(z) < Rank Df(¢) = r and v =
lz = Ellv(f,€) < 1— 2. Then

1V -v)’(2-v)
2 P(v)?

Proof. It is a consequence of Lemma 5.4:

IDf (@) F(©) = |(Df (2)" = DFONFE)Il < IDF ()" = DFEI £ E)]

IDf ()" F(€) | = &llaa (£, €)-

—v)2(2—w
< LHVBADPR=0) ot 7).

2 P(v)?
O
Lemma 7. Under the hypothesis of Lemma 6, we have
v||lz — & 1+4vV5(1—v)2(2—w
INp(z) €1 < M pscoy(e — &)+ Do S TEVSRZOEE 20N g, 1,6,

P(v) 2 $(v)?
Proof. We have
Ni(@) =& = z—£=Df(n)f(z)
= e py@)(® — &)+ Df (@)1 (Df(2) (@ —€) — f(2) + f(§)) — Df(2)"f (€).
Using Taylor’s formula for both f(z) and Df(z) at £ gives

k
Df(@)a—€) ~ f@) + £(©) = b~ 2L @ g
k>1
so that
IDf (@)@ — &) — (@) + FO < DA Mz — & S (k- 1o
£>2
L GIRER
By Lemma 5.3 we get
IDF @) (DF @)@ —€) — F@) + F©) | < Lo — g 2 = 22— &I
= 50 T2~ ()
The conclusion comes from Lemma 6:
v — — 2 —
V7 (@) — €] < Mer (e — )| + B8 LFVEAZ0PC0)y oy p g

P(v) 2 P(v)?
O
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Lemma 8. Under the hypothesis of Lemma 6, we have
IMker Df@) (T — I < [Mker D) (T — &)+

B 2—wv 1+V5(1—v)2%(2—-0) 2v — v?
ol §||((1_U)2+ pl-d L )

Proof.
Mker Do) (# — &) = (id — Df () DS () (& — €) =

Hker nf(e)(x — &) + DF(E)'(Df(€) — Df () (z — &) + (Df(E)' — Df(2)") Df (2)(z - €)
=a+b+ec
We give a bound for ||b|| via Lemma 5.1:
2
T —lle—¢l

<227
ol < 2=

and a bound for ||¢|| via Lemma 5.2 and 5.4:

1+V5(1—v)2%(2v —v?)
2 P(v)?

lell <

v — '02
(kr€)+ 2255 ) el

O

Lemma 9. Let £ and x € E with f(§) =0, Rank Df(¢) =7 and v = ||z — €| (f,€) <1-— @ Then
we have

INs(2) — &Il < Mker pf(e) (2 — I + [lz = ElvA (v, K(Df(£)))

with V8
1 2—w 1+vV5 (1 —v)2%(2—w) 20 — v?
Av,K) = K+ "
) Rl () B ) e
and
K(Df()) = IDFEN IDf ).
Proof. It is an easy consequence of Lemma 7 and Lemma 8 with f(¢) = 0. O
Proof of Theorem 5. Recall that ||z — &l| < 3R. We first notice that, for any z € Bg(&) we have
1 V2
_ < < _Ye
|z — &ollv(f, &) < Ryrg, < e <l--

The last inequality is from the fact that A(v, K) > 3. Thus V N Bg(&) is a smooth submanifold in
E (Proposition 2). Since & is the projection of zy onto V', and because V N Bg(&y) is smooth, the
orthogonality relation

Mger pf(eo)(To — &) =0
holds. By Lemma 9, we get

1
INf(z0) — &oll < llmo — &ol*11(f, &) Avo, Ko) < |lzo — &ol|RYRo ARgo < §||960 —&oll,
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so that 21 = Ny(zo) is in Br (&) and consequently projects on V' in a point {; € Bg(£o) because
2

€1 — ol < Mlz1 — &l + [l — &oll < 2[|z1 — &ol| < R.

Now we proceed by induction. Let z;1 = Ny(z)) and & be the projection of z; onto V. Then

g1 = Ersill < Noeer — &l < llzn — Ell71 (Fs &) Alvr, Ki)
2
< (Mo 6ll) (7.6 Alow, i)
1. 9k 2
< (7)) lloo ol oo — &ollrmss A
1.1 ok+1 k+1
< @z — el = G - &l

Here Ky = K(f,&), vk = |lzk — &kll71(f,€k)- Further we have {11 € Br(§o) by noting that
1€k+1 — &kll

k k
ekrr —Eoll < D lg =&l <2 llzjen =&l

IN

lzr1 — il + lops1 — Eell < 2l|zp1 — &kl

N

k 2i+1_1
1 1/2
< 2 — — <2 —
< 20(2) oo = oll < 2212 0 6o
4
< Slw-&l<R
which compeletes the induction. O

The following lemmas will be used to prove Proposition 3 and to compute the tangent space T¢, Vi,
for &y € V, as required in Theorem 5. We begin with an identity given in Stewart-Sun [19] Chapter
111, §3.4.

Lemma 10. Let A and B be m x n matrices with Rank A = Rank B =r. Then
Bl = At — AN(B — A)AT + (4" A) (B — A) Ty ayr — Tlker 4(B — A)*(A4%)! 4+ O(|1B — A|]%).
Lemma 11. When Rank Df(z) =r, the derivative of Df(z)!f(z) is given by
D(Df(2)' f(2))(&) = Tixer pyeayL(®) — Df(2)/(D*f(2)(#)Df (z)' f ()

+(Df(x)*Df ()1 (D?f (@) (&) T p oy f ()
—ker D) (D*f(2)(&))*(Df (@)D f (x)*)! f ().

Proof. Note that

D(Df(z)! f(x))(&) = D(Df(z)")(#) f (2) + Df (x)'Df(z)(&).

Now use Lemma 10 with A = D f(z) and the chain rule to { o Df. Notice that Df(y) has rank r in
a neighborhood of z. O
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Lemma 12. When Df (€)' f(€) =0 and Rank Df(¢) = r, we have
D(Df(&)' ()i = Wiker pyee)+ + (Df(€)*DF(E)N(D*F(€)2)"f (€)-
When Vis is smooth around &, its tangent space is the kernel in E of this linear operator.

Proof. In Lemma 11, use the fact f(¢) € Im Df(¢)*; This gives us Wim pfeeyr f(€) = f(§) which
simplifies the third term, and that (D f(£)Df(€)*)Tf(¢) = 0 which annihilates the last term in Lemma
11. This is because Ker (AA*) = Ker (A*) = Im Al, for any matrix A. O

Lemma 13. When Df(£)1f(¢) =0, Rank f(§) =7 and a1 (f, &) < 5, then
Mker Df(e) (& = < My, (2 — I + 0(ea(f, )|z — £l

(1++5)(1+2a) 1
9(a)za<2+ = 20) ),0§a<§.

with

Proof. We first notice that D(Df(€)'f(£))4 is always in Ker Df(€)* so that the rank of this
operator is < r. Let us write A = Iliker pr(e))r and B = (Df(§)*Df(§ FENTHD2f(€)(2))*f(£). We have

D(Df(f)ff(f)) = A+ B, ke Df(¢) = IKer 4 and HTgV}s = Uker (A+B)-
We also can notice that ||A|| = ||AT|| = 1 and ||B|| < 201(f,€) < 1, by the definition of a;. By
Lemma 4 we get Rank (A + B) = r and
1 1
< .
1—IB|| = 1= 2a1(f,£)

I(A+ BTl <

We have
Oker A — Oker (a+5) = (A+ B) (A+ B) — ATA= ((A+ B)! - A")(A+ B) + A'B,

so that, by Lemma 3

1++5
Mker 4 — Mger (a1m)ll < 5 max (II(A +B)Y|?, IIATIIQ) IBII(IAll + 1B + [|AT]] || B]|

1+V6  201(f,€)
N 2 (1 _2a1(fa£))2

The conclusion is now easy. O

(1+201(f,8)) + 201 (f, &) = 0(cr(f,£))-

Lemma 14. Let & be given as in Lemma 13 and x € E with v = ||z — &M (f,§) <1— @ Then

[Ny (z) =&l < [Ory, (2 = Ol + Alv, K(Df(E)))vllz — & + B(v, e (f, ) e (f, &)z — &
with
14+v5 (1 —0)%(2—0) N 6(c)

B(v,a) = 5 OE o
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Proof of Theorem 6. The proof of Theorem 6 is similar to the proof of Theorem 5 but uses Lemma
14 instead of Lemma 9. We define x4 = Ny(z) inductively and let &, = projy,,xx. Inductively by

Lemma 14,
(1-AMNR

lz1 =&l <z = &oll < Allzo — &l < 5

recalling that ||zg — &l| < 52 R and A < 1. Moreover because
160 = oll < lI&1 — $1|| + 21 = &oll < 2[lz1 — &oll < 2A[lzo —&of| < (1 -AR<R
so that &; € Br(&o). Inducitively by Lemma 14 with z = zj_;, we have
2k — &kl < llox — E—1ll < A¥llzo — o,

Note that [|{x — Se-1ll < |7k — &kll + lzk — Ee—1ll < 2[|lmk — g1l Moreover & € Br(&o), becuase

k K K
, A
ek = &oll < D06 = &all < 32wy = &all <23 Mllwo - &oll < 25— w0 — &oll < R,
Jj=1 Jj=1 Jj=1
which compeletes the proof. O

Proof of Proposition 3. We first notice that

IDFEN =p~" with =" min [IDf()3].
&€ (Ker Df(€))+
We also have

SDPF(©)i = (D*[(©)#)° F(€) + (D) DF©)

so that .
S DPF(©)(#,3) =< f(€), D*f(§)(&,4) > +|IDf (€)&]*.
If we take & € (Ker Df(¢))*, ||Z]| =1, then

LD2F(©)(3,0) > 2~ [ F©I IDF©)l = w21~ [DFETRIFE I D)) > 120 —20(£,€)) > 0.

2
O

Lemma 15. Let z,y € E and u = ||y — z||71(f,z) <1— 4 as in Lemma 5. Then

L) < e )’ (Bu(f>2) + 7= lly = all + K(Df (@) ly — ),
n(o

u

3 () < g )“ ( 1(f,2) + 1_u+K(Df(m))U)-

1/k
Proof. 3) is a consequence of 1) and 2). 1) goes as follows: Recall that y; = sup (||Df(m)f|| I % ||)
and u = ||y — z||y1(f, z). We have

f(y) = f(z) + Df(z +2Dkf )

k>2
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so that

IF@I < @I+ 1D @)y = =l + 1D @)y — 2]l

and we conclude by Lemma 5.3. To prove 2) we start from

p ad k+€'Dk+lf()
DEfly Z (k +2)!

(y — )"

=0
This gives

“D’“f(y) I
k! =

(]

k+£
(’“” ) D), g

o\ (k+2)!

k+¢
( ; )w 'y~ 21D @)1 = e 107 @)

~[~]

noting that (ﬁ)(k) = u)k+1 =0 ( K —;—E ) uf. By Lemma 5.3, we obtain
IDf(y )1‘||||D fWll < (1-u? A _ 1 7!
oY) A-wkt o g(u) (1 - w)t
thus (/. 2)
AAVERS
NnHy) < — -~
W) S G uyg)
O
In the following Lemmas we consider zy,z € E with Rank D f(z¢) = r and such that
V2
u = ||.’I) - $0||71(f7$0) < 20[1(f,.’E0) <1- 7

We also introduce y = Ny(z). Our objective is to give an estimate for | N¢(y) — N¢(z)| in terms of
|ly—z||. We begin a series of Lemmas. We often use the notations ay = a1 (f, zo) and Ko = K(D f(xo)).

Lemma 16. Suppose that u = ||z — zo|[71(f,z0) < 201(f,20) < 5. Then

1. oa(f,z) <4.2a1(f, z0)K(f(z0)),
2. K(f(z)) <1.25K(f(z)).

Proof. From Lemma 15.3 with z and z( instead of y and z, we have

— 2 _
a(fz) < ﬁ(ao + o+ Kou) < ;(U; (3Koao + f‘f’i)
1- 2
= zp(u)z o0 (3Ko + ﬁ) < (1.37)ag (3K + 0.03) < 4.2a0 K,
for u < 2ap < 57. A bound for K(Df(x)) is given by Lemma 5.2 and 5.3.
K(Df(z)) < (1 —u)? (K(Df(z0)) + M) < (1.122)(Ko + 0.11) < 1.25K,
~ (u) Plu) ' = < ;

1
for u < 5. O
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Lemma 17. When y = Ny(x) then
Ny(y) = Nj(z) = Df(@)'(Df(z)(y—2)+ f(2) = f(y))
+H(Df (@) = Df )N (z) + (Df (@)' = DI W)N(f (W) = f())-

Proof. Just note that y —z = Df(z) D f(z)(y — z), because N¢(z) —z € Im Df(z)'.
O
In Lemma 17, Ny(y) — Nyf(x) appears as the sum of the three quantities. We will use the notation

[Nf(y) = Ny(z)| <A+ B +C,
for the norm of each of these expressions.

Lemma 18. Let u, = ||y — ||y (f, ).
u
L A< o -yl

1++5(1 usz 2(2 — uy,
2. < LT VE w()giv Jon (f,)ly — 2.
5. c< LEVE0- w C ) u (K (DF @) + 25—l

Proof. By using the Taylor series of f(y) around z and the definition of ;(f, z) we obtain
A < |Df(@)N(Df(x)(y —$)+f($)—f(’y))||

< IDfe ol =y el
(From Lemma 5.4, we have
ID5(e)t = D) < L VEUZ @2y sy,

P (ugz)?
so that V8 ,
14+ V5 (1 — ug)(2 — ug)
b= 2 P (ug)?
The Taylor expansion of f(y) at = gives
1) = F@I < 1DF @) (K DS @) + 725w~ yll

This yields, using Lemma 5.4,

ar(f, )|y — =l

us(K (DS (@) + 7=l — vl

O
Proof of Theorem 7. Let us denote y = Ny(z) and u = ||z — zo|y1(f, z0). Under the hypothesis
ly — || < ||z1 — 0| and u < ; we will prove that

IN; ) — Ny(@)l < 5ly .



First notice that, using Lemma 15.2,

1
uy = Iy — zlln(f,z) < |z — woll% < 12500 < o,

for u < ﬁ. Hence we have

Ug

1
< Jly - #l|(1.25) a0

l_x - Uz

A< ly — = < (1.25)(1.03)ao [ly — =[] < 130w ly — =|.

It is convenient to have the following estimate:

T+v5 (1 —ug)?(2 — uy)
2 P(ug)?

for u, < %. For B, by Lemma 16.1, we have

E, < <3.78

B < Epau|ly — z|| < (3.78)(4.2c0 Kp) ||y — z|| < 15.909Kp|ly — z||
Using Lemma 16.2, we have

u
C < Epu,(K;+ 1 —wu Ny — z|| < Epugy(1.25Ky + 0.03)]|y — z||
T

< (3.78)(1.25)a (1.28) Ko ||y — z|| < 6.1 Ko||y — .

Hence we have

1
INs(y) = Ny(@) < A+ B +C < (1.3 4159 + 6.1)ao Kolly — 2| < 2daoKolly — 2l < 5 lly — =ll,

because oy Ky < %. Now it is easy to prove, by induction over k, that

1 k
s = aull < (5) lor = ao

This completes the proof.

17
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