Advanced Calculus, Final Test, December 2003

1. (a) Show that the solution space for the following problem is a subspace of \mathbb{R}^3 .

$$3x - 2y + z = 0$$

- (b) Find the basis of Z.
- (c) Find the orthonormal basis of Z by going through Gram-Schmidt process.
- 2. Determine if (1,1) and (0,1) are linearly independent.
- 3. Find the distance between (1,3) and (2,2) in 1-norm, 2-norm, max norm.
- 4. Find the matrix associated with the following linear maps
 - (a) Projection map. $L: \mathbb{R}^4 \to \mathbb{R}^4$ and $L(x_1, x_2, x_3, x_4) = (x_3, x_4)$.
 - (b) $L: \mathbb{R}^3 \to \mathbb{R}^3$ and $L(x_1, x_2, x_3) = (2x_1, 2x_2, 5x_3)$
 - (c) Permutation $L: \mathbb{R}^4 \to \mathbb{R}^4$ and $L(x_1, x_2, x_3, x_4) = (x_2, x_4, x_1, x_3)$
- 5. Find the determinant of the following 4x4 matrix.

$$\left(\begin{array}{rrrrr} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{array}\right)$$

- 6. Prove the following statements by using $\epsilon \delta$ method.
 - (a) $\lim_{x \to 2} x^2 3x = -2$ (b) $\lim_{n \to \infty} \frac{n-1}{n} = 1$
- 7. Let f(x) = -1 for $x \leq 0$ and $f(x) = x^2$ if x > 0. Find a point c where f(x) is discontinuous. Show that c is a discontinuity point of f using $\epsilon \delta$ method. In other words, find an ϵ for which there is no such δ that

If
$$|x-c| < \delta$$
 then $then|f(x) - f(c)| < \epsilon$

- 8. Let $f: \mathbb{R}^4 \to \mathbb{R}^2$ defined by $f(x, y) = (x^2, y, xy, y^2)$.
 - (a) Find F'(c) where c = (2, 1).
 - (b) Find the basis of the tangent plane at c and find the tangent plane at c.
- 9. Let $f(x,y) = \frac{xy^2}{x^2+y^2}$ if $(x,y) \neq (0,0)$ and f(x,y) = 0 if (x,y) = (0,0)
 - (a) Find the directional derivative $D_v f(0,0)$ for v = (1,2).
 - (b) Show that $D_v f(0,0) = f(v)$ for all v.
 - (c) Show that f is not differentiable at (0,0).