
MAT 200 OUTLINE, PART 1

I’m preparing a lecture outline for the benefit of those who are unable to make
it to class due to illness or other reasons. See the course textbook for additional
details about most of these items.
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• What is math? How would you define it to a friend? Wikipedia: “it has
non generally accepted definition.” But here is one possibility: a method of
establishing truth by formulating conjectures and then either proving the
conjecture or giving a counterexample

• Conjecture, proof, theorem, counterexample, axiom
• Proposition, predicate, statement
• Five logical connectives: or (∨), and (∧), not (−), if. . . then (=⇒), if and only

if (⇐⇒)
• Truth tables
• In principle, everything we do in this class can be made completely “rigorous”

by working explicitly with axioms. This would entail the following:
– Make an “alphabet” of symbols that can be used to make statements
– Make a list of acceptable “primitive” or “atomic” statements
– Describe the acceptable ways to make more complicated statements out

of existing statements
– Give a list of axioms expressed symbolically (see “axiomatic set theory”

or “Zermelo–Fraenkel set theory”)
– Describe the exact rules of logical inference to establish theorems
– Every new definition must be stated in terms of existing symbols

In this way, mathematics becomes a sort of mechanical manipulation of sym-
bols, something like a computer program. As you might imagine, this would
take a lot of tedious work, probably beyond both the patience of most students
here and the time we have available in this class.

• Instead, we stick to common practice by being more informal about some of
these technical or logical issues. We take certain things like arithmetic for
granted. It is helpful to be aware that the more formal approach exists
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• Why is “4 > 3 =⇒ 4 ≥ 0” a true statement? In what way does the conditional
=⇒ not correspond to our English usage of the term?

• Universal implication
• How do you prove 1 + 1 = 2? In a vacuum, you can’t. It makes sense to talk

about proof only after you’ve agreed on definitions for the relevant terms and
axioms or facts accepted as true. Back in the early 1900s, mathematicians
were very interested in the foundations of the subject. For example, Bertrand
Russell in Principia Mathematica famously needed hundreds of pages before
proving 1 + 1 = 2. Needless to say, such a proof is very dependent on the
choice of definitions and axioms. Arguably, no proof is needed for a statement
as fundamental as 1 + 1 = 2.

• Thus, we need to fix a starting point. In Prop. 2.3.1 and Axiom 3.1.2, the book
lists specific properties of the real numbers that we can take for granted when
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writing proofs (commutative property, associative property, distributive prop-
erty, zero, unity, subtraction, division, trichotomy, addition law, multiplication
law, transitive law)

• There are two broad steps for writing proofs: (1) work out the steps involved on
scrap paper (2) write out a polished argument in English following principles
of good mathematical writing

• Prove: for any positive real numbers a, b, a < b =⇒ a2 < b2.
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• Three methods of proof (so far): direct proof, proof by cases, proof by contra-
diction

• divide (i.e., one integer divides another integer), even, odd
• Prove: 101 is an odd number
• Often the same proposition can be proved in multiple ways. It’s usually con-

sidered bad style to use proof by contradiction when a direct proof is available
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• Prove: 0 · a = a · 0 = 0 for all real numbers a
• Prove: if a, b, c are integers such that a > b, then ac ≤ bc =⇒ c ≤ 0.
• The previous proof can be done by contradiction. But it is simpler to use the

logically equivalent proof by contrapositive
• Prove: if a, b are real numbers, then ab = 0 ⇐⇒ a = 0 or b = 0
• To prove biconditional statements, we usually split the proof into two parts:

the forwards implication =⇒ and the backwards implication ⇐=
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• Equivalence of propositional statements, e.g. −(P ∧ Q) ⇐⇒ −P ∨ −Q and
−(P ∨ Q) ⇐⇒ −P ∧ −Q (DeMorgan’s laws), (P =⇒ Q) ⇐⇒ (−Q =⇒ −P )
(contrapositive)

• When writing a proof, it’s fine to switch from the original form of the proposi-
tion to another form which is logically equivalent. One example of this is proof
by contrapositive.

• The induction principle, which is an axiom about the integers
• base case, inductive step
• Prove: for all positive integers n, n ≤ 2n

• Prove: For all integers n such that n ≥ 4, n2 ≤ 2n

• Note that the base case can be any integer (of course, the proposition is not
proved for any number smaller than the base case)
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• Definition by induction (recursive definition) for
∑n

i=1 an, x
n, n!

• Addition and multiplication of natural numbers can be defined by induction
using the fundamental operation of “successor” (see “Peano arithmetic”)

• Strong induction
• the Fibonacci sequence u0 = 0, u1 = 1, ui+1 = ui + ui−1

• Prove: un = (αn−βn)/
√
5, where α = (1+

√
5)/2, β = (1−

√
5)/2. Note that

α is the golden ratio.
• set: any well-defined collection of objects
• Examples of sets: Z,Z+,Z≥,Q,R,R+,R≥,C
• x ∈ E, x /∈ E
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• Three ways to specify a set:
(1) list the elements, e.g. {1, 3, π,−14}
(2) conditional definition, e.g. {n ∈ Z : 0 < n < 6}
(3) constructive definition, e.g. {n2 : n ∈ Z} or Q = {a/b : a, b ∈ Z, b 6= 0}

• equality of sets: A = B means x ∈ A ⇐⇒ x ∈ B for all x. This is an axiom
about the nature of sets. For example, {1, 3, π,−14} = {3, 1, 1,−14,−14, π}

• empty set φ
• subset relation A ⊆ B, proper subset A ( B
• set operations

– intersection A ∩B = {x : x ∈ A and x ∈ B}
– union A ∪B = {x : x ∈ A or x ∈ B}
– difference A \B = {x : x ∈ A and x /∈ B}
– complement Ac = {x ∈ U : x /∈ A}, where U is some universal set

depending on the problem
• Prove: A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
• Two approaches for this proof and similar proofs: show ⇐⇒ all at once (good

when the proof is simple), or show =⇒ and ⇐= separately (good when the
proof is more complicated)
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• Thm. 6.3.4: standard properties of set operations
• Prove: (A∪B)∩ (C ∪D) = (A∩C)∪ (A∩D)∪ (B ∩C)∪ (B ∩D) using these

standard set properties
• power set P(X)
• universal quantifier “for all” (∀a ∈ A,P (a))
• existential quantifier “there exists” (∃a ∈ A,P (a))
• dummy variable
• ambiguity in English meaning of “any”, “not”. Try to avoid these ambiguities

when writing
• For multiple quantifiers, the order affects the meaning significantly. Compare:

– ∀a ∈ A,∀b ∈ B,P (a, b)
– ∃a ∈ A,∃b ∈ B,P (a, b)
– ∀a ∈ A,∃b ∈ B,P (a, b)
– ∃b ∈ B, ∀a ∈ A,P (a, b)
– ∀b ∈ B, ∃a ∈ A,P (a, b)
– ∃a ∈ A,∀b ∈ B,P (a, b)

• Which of the above are true for A = B = Z+, P (a, b) = a ≤ b?
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• How to prove/disprove statements of the form ∀a ∈ A,P (a) and ∃a ∈ A,P (a)
• Decide which are true and which are false. Try writing out proofs.

– ∀x, y ∈ R, xy = x
– ∀x ∈ R, ∃y ∈ R, xy = x
– ∃x ∈ R, ∀y ∈ R, xy = x
– ∃x, y ∈ R, xy = x

• X × Y , the Cartesian product of two sets X and Y
• ordered pair (x, y). Contrast this with {x, y}.
• Sketch {(m,n) ∈ Z+ × Z+ : m < n}. How does this relate to propositions like

(∀m ∈ Z+,∃n ∈ Z+,m < n) and (∀n ∈ Z+,∃m ∈ Z+,m < n)?
• Properties of the Cartesian product:
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– A× (C ∪D) = (A× C) ∪ (B ×D)
– A× (C ∩D) = (A× C) ∩ (B ×D)
– (A× C) ∩ (B ×D) = (A ∩B)× (C ∩D)
– (A× C) ∪ (B ×D) ⊆ (A ∪B)× (C ∪D)
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