PRACTICE FINAL FOR MAT 341

In problems (1)-(4) below we consider a cylindrical rod centered along the x -axis in 3-dimensional space, from $x=0$ to $x=a$; for each $0 \leq x \leq a$ the intersection of this rod with the plane containing $(x, 0,0)$ and perpendicular to the x-axis is a disc D_{x} of area A. We assume that the physical properties of this rod are the same at each of its points: in particular its density function is a constant function ρ, and the heat capacity per unit mass for the rod is also a constant function c (see page 36). We assume that for each time $t \geq 0$ and for each $0 \leq x \leq a$ the temperature at each point of D_{x} is equal to the same value $u(x, t)$. Finally we assume that the cylindrical surface of the rod is insulated (the ends of the rod are not necessarily insulated).
(1) What does the heat flux function $q(x, t)$ measure? State Fourier's law of heat conduction for this rod.
Solution: See bottom of page 135 and top middle of page 137.
(2) Suppose that the rod is also insulated at its right hand end D_{a} and is kept at a constant temperature of 2 degrees celcius at its left hand end D_{0}.
(a) Give a mathematical description (some equations) of all these conditions placed on $u(x, t), 0 \leq x \leq a$ and $0 \leq t$.

Solution:

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{k} \frac{\partial u}{\partial t} \\
u(0, t)=2, \quad \frac{\partial u}{\partial x}(a, t)=0
\end{gathered}
$$

(b) Find a general solution to the equations in part (a).

Solution:

$$
u(x, t)=2+\sum_{n=1}^{\infty} b_{n} \sin \left(\lambda_{n} x\right) e^{-\lambda_{n}^{2} k t}
$$

where $\lambda_{n}=\frac{(2 n-1) \pi}{2 a}$.
(3) Let $H(x, t)$ denote the total heat contained within the portion of the rod between D_{0} and D_{x}. Recall that $H(x, t)=\int_{0}^{x} \rho c A u(y, t) d y$ (see page 136 of text).

Suppose that the rod is insulated at its right hand end D_{a} and that $H(a, 2)<H(a, 0)$. Then show that $\frac{\partial u}{\partial x}\left(0, t_{0}\right)>0$ holds for some $0 \leq t_{0} \leq 2$. Solution: The rod can loose heat only thru the disc D_{0}. It must loose heat thru the disc D_{0} at some time $0 \leq t_{o} \leq 2$ because $H(a, 2)<H(a, 0)$. Thus the rate of heat flow thru D_{0} at time t_{o} - which is equal to $q\left(0, t_{o}\right) A$ must be negative; i.e. $q\left(0, t_{o}\right)<0$. Since $q(x, t)=-\kappa \frac{\partial u}{\partial x}(x, t)$ (why?), it follows that $\frac{\partial u}{\partial x}\left(0, t_{o}\right)>0$.
(4) Suppose that $u(x, t)$ satisfies $u(x, 0)=3$ in addition to the properties of problem (2)(a) above.
(a) Compute $H(a, 0)$ and limit $_{t \rightarrow \infty} H(a, t)$.

Solution: $H(a, 0)=3 a \rho c A$. limit $_{t \rightarrow \infty} H(a, t)$ should equal to the heat content of the bar for the steady state solution $v(x)$. Note that $v(x)=2$; so the heat content for the steady state solution is $2 a \rho c A$.
(b) Verify that $\frac{\partial u}{\partial x}(0, t)>0$ for all $t>0$. (Hint: Write $u(x, t)$ as an infinite series and compute its x-derivative term by term.)
Solution: $u(x, t)$ is the solution to the equations of (2)(a) and the initial condition $u(x, 0)=3$. Thus $u(x, t)$ is equal to the infinite series of given in (2)(b), where the b_{n} in (2)(a) are given by $b_{n}=$ $\frac{2}{a} \int_{0}^{a} \sin \left(\lambda_{n} x\right) d x=\frac{2}{a \lambda_{n}}$. Thus $\frac{\partial u}{\partial x}(0, t)=\sum_{n=1}^{\infty} \frac{2}{a} e^{-\lambda_{n}^{2} k t}$, which is clearly positive for all $t>0$.
(c) Use part (b) to verify that $H(a, t)$ is a decreasing function in t.

Solution: Using Fourier's Law, and part (b) of this problem, we conclude that $q(x, t)<0$ for all t . Thus heat is flowing out of the rod at D_{0} for all $t>0$; implying that the heat content of the rod $H(a, t)$ is decreasing for all $t>0$.
(5) For all $0 \leq x \leq \pi$ and $0 \leq t$ suppose that the following equations hold for the function $u(x, t)$:
(i) $\frac{\partial^{2} u}{\partial x^{2}}(x, t)=\frac{\partial^{2} u}{\partial t^{2}}(x, t)$
(ii) $u(0, t)=0, u(\pi, t)=0$
(iii) $\quad u(x, 0)=\sin (x), \frac{\partial u}{\partial t}(x, 0)=\sin (x)$
(a) find the d'Alembert solution to these equations.

Solution: $u(x, t)=\frac{\sin (x+t)+\sin (x-t)}{2}+\frac{\cos (x-t)-\cos (x+t)}{2}$
(b) find the Fourier type solution to these equations.

Solution: $u(x, t)=\sum_{n=1}^{\infty} \sin (n x)\left(a_{n} \cos (n t)+b_{n} \sin (n t)\right)$, where $a_{n}=\frac{2}{\pi} \int_{0}^{\pi} \sin (x) \sin (n x) d x$ and $b_{n}=\frac{2}{n \pi} \int_{0}^{\pi} \sin (x) \sin (n x) d x$. Thus

$$
u(x, t)=\sin (x)(\cos (t)+\sin (t)) .
$$

(c) does this vibrating string ever return to its original position?

Solution: Using the solution in (b) above, we see that $u(x, t)$ is periodic of period 2π in the t variable. So the string returns to its original position after 2π amount of time has elapsed.
(6) Show that if $u_{1}(x, t)$ and $u_{2}(x, t)$ both satisfy equations (i),(ii) in problem (5), then $u(x, t)=\alpha_{1} u_{1}(x, t)+\alpha_{2} u_{2}(x, t)$ also satisfies (i),(ii) in problem (5) for any real numbers α_{1}, α_{2}.
Solution: This uses the homogeneity of (i)(ii).

To verify (i):

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\sum_{i=1}^{2} \alpha_{i}\left(\frac{\partial^{2} u_{i}}{\partial x^{2}}+\frac{\partial^{2} u_{i}}{\partial y^{2}}\right)=\sum_{i=1}^{2} \alpha_{i} \frac{1}{c^{2}} \frac{\partial^{2} u_{i}}{\partial t^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}} .
$$

To verifiy (ii): $u(0, t)=\sum_{i=1}^{2} \alpha_{i} u_{i}(0, t)=\sum_{i=1}^{2} \alpha_{i} 0=0 ; u(a, t)=$ $\sum_{i=1}^{2} \alpha_{i} u_{i}(a, t)=\sum_{i=1}^{2} \alpha_{i} 0=0$.
(7) Do problem (11) on page 232 of the text.
(8) Suppose that $u(x, t), 0 \leq x, t$, satisfies

$$
\begin{gathered}
\frac{\partial u}{\partial x}(x, t)=-\frac{1}{c} \frac{\partial u}{\partial t}(x, t) \\
u(0, t)=0 \\
u(x, 0)=f(x)
\end{gathered}
$$

for some given differentiable function $f(x)$.
(a) Show that $u(x, t)$ also satisfies

$$
\frac{\partial^{2} u}{\partial x^{2}}(x, t)=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}(x, t)
$$

and

$$
\frac{\partial u}{\partial t}(x, 0)=-c f^{\prime}(x) .
$$

Solution: The first equality is derived as follows:

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{-1}{c} \frac{\partial u}{\partial t}\right)=\frac{-1}{c} \frac{\partial}{\partial x}\left(\frac{\partial u}{\partial t}\right)=\frac{-1}{c} \frac{\partial}{\partial t}\left(\frac{\partial u}{\partial x}\right)=\frac{-1}{c} \frac{\partial}{\partial t}\left(\frac{-1}{c} \frac{\partial u}{\partial t}\right)=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}
$$

The second equality is derived as follows:

$$
\frac{\partial u}{\partial t}(x, 0)=-c \frac{\partial u}{\partial x}(x, 0)=-c f^{\prime}(x) .
$$

(b) Solve for $u(x, t)$ in terms of the function f.

Solution: In part (a) we showed that u satisfies the wave equation and has initial position $u(x, 0)=f(x)$ and initial velocity $\frac{\partial u}{\partial t}(x, 0)=$ $g(x)=-c f^{\prime}(x)$. Thus - by d'Alembert - we have that
$u(x, t)=\frac{1}{2}\left(f(x+c t)+f_{o}(x-c t)+G(x+c t)-G_{e}(x-c t)\right)$
where

$$
G(x)=\frac{1}{c} \int_{0}^{x} g(s) d s=\frac{1}{c} \int_{0}^{x}-c f^{\prime}(s) d s=-\int_{0}^{x} f^{\prime}(s) d s=-(f(x)-f(0)) .
$$

Combining these last two equalities we get that

$$
u(x, t)=\frac{1}{2}\left(f_{o}(x-c t)+f_{e}(x-c t)\right) .
$$

Note that $\frac{1}{2}\left(f_{o}+f_{e}\right)=\hat{f}-$ where $\hat{f}(x)=f(x)$ if $x \geq 0$ and $\hat{f}(x)=0$ if $x<0$.
(c) Give a physical description of the solution of part (b).

Solution: This is a traveling wave, moving from left to right.
(9) A real valued function $u(x, y)$ of the two real variables x, y is harmonic if it satisfies

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

on its domain.
(a) If $u(x, y)=\sum_{0 \leq i+j \leq 3} a_{i, j} x^{i} y^{j}$, and u is harmonic in a disc of radius 2 centered at $(-3,4)$, then prove that u is harmonic on the whole plane.
Solution: u is harmonic on the disc iff $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ holds on the disc.

Note that $\frac{\partial^{2} u}{\partial x^{2}}=2 a_{2,1} y+6 a_{3,0} x$; and $\frac{\partial^{2} u}{\partial y^{2}}=2 a_{1,2} x+5 a_{0,3} y$. Thus we have that u is harmonic on the disc iff

$$
2 a_{2,1}+5 a_{0,3}=0
$$

and

$$
6 a_{3,0}+2 a_{1,2}=0
$$

Note that these last two equalities also equivalent to u being harmonic on the whole plane.
(b) It is a fact that if u is harmonic on a finite rectangle $\mathbb{R}=\{(x, y) \mid$ $a \leq x \leq b, c \leq y \leq d\}$, then it takes on neither a maximum value nor a minimum value in the interior of this rectangle $\{(x, y) \mid a<$ $x<b, c<y<d\}$. Prove this fact under the additional hypothesis that $\frac{\partial^{2} u}{\partial x^{2}}$ does not vanish in the interior of the rectangle.
Solution: If u takes on a maximum or minimum at a point p inside of \mathbb{R}, then p must be a critical point for u. Now apply the second derivative test for u at p; you will see (using the hypothesis for u) that p is a saddle point for u.
(10) Consider the following 2-dimensional heat problem:

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{1}{k} \frac{\partial u}{\partial t} \\
u(x, 0, t)=0, \quad u(x, b, t)=0 \\
u(0, y, t)=3 \sin \left(\frac{2 \pi}{b} y\right), \quad u(a, y, t)=-\sin \left(\frac{5 \pi}{b} y\right) \\
u(x, y, 0)=x+y
\end{gathered}
$$

Find the steady state solution for this problem.

Solution: The steady state solution $v(x, y)$ satisfies the following equati0ns:

$$
\begin{gathered}
\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0 \\
v(x, 0)=0, v(x, b)=0, v(0, y)=3 \sin \left(\frac{2 \pi}{b} y\right), v(a, y)=-\sin \left(\frac{5 \pi}{b} y\right)
\end{gathered}
$$

So we may use the results of section 4.2 (with the roles of x, a and y, b reversed) to conclude that

$$
v(x, y)=\sum_{n=1}^{\infty}\left(a_{n} e^{\lambda_{n} x}+b_{n} e^{\left.\lambda_{n} x\right)}\right) \sin \left(\lambda_{n} y\right)
$$

where $\lambda_{n}=\frac{n \pi}{b}$. We can solve for a_{n}, b_{n} by comparing the above form of $v(x, y)$ with the last two boundary conditions. Thus $3 \sin \left(\lambda_{2} y\right)=v(0, y)=$ $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right) \sin \left(\lambda_{n} y\right)$, which implies that

$$
\begin{gathered}
3=a_{2}+b_{2} \\
0=a_{n}+b_{n}, \quad n \neq 2 .
\end{gathered}
$$

Also $-\sin \left(\lambda_{5} y\right)=v(a, y)=\sum_{n=1}^{\infty}\left(a_{n} e^{\lambda_{n} a}+b_{n}^{-\lambda_{n} a}\right) \sin \left(\lambda_{n} y\right)$, which implies

$$
-1=a_{5} e^{\lambda_{5} a}+b_{5} e^{-\lambda_{5} a}
$$

$$
0=a_{n} e^{\lambda_{n} a}+b_{n} e^{-\lambda_{n} a}, \quad n \neq 5
$$

We can solve the preceeding 4 displayed equalities for a_{n}, b_{n} : in particular $a_{n}=0=b_{n}$ if $n \neq 2,5$.

