
PRACTICE FINAL FOR MAT 341

In problems (1)-(4) below we consider a cylindrical rod centered along the
x-axis in 3-dimensional space, from x = 0 to x = a; for each 0 ≤ x ≤ a the
intersection of this rod with the plane containing (x, 0, 0) and perpendicular
to the x-axis is a disc Dx of area A. We assume that the physical properties
of this rod are the same at each of its points: in particular its density function
is a constant function ρ, and the heat capacity per unit mass for the rod
is also a constant function c (see page 36). We assume that for each time
t ≥ 0 and for each 0 ≤ x ≤ a the temperature at each point of Dx is equal
to the same value u(x, t). Finally we assume that the cylindrical surface of
the rod is insulated (the ends of the rod are not necessarily insulated).

(1) What does the heat flux function q(x, t) measure? State Fourier’s law

of heat conduction for this rod.
Solution: See bottom of page 135 and top middle of page 137.

(2) Suppose that the rod is also insulated at its right hand end Da and is
kept at a constant temperature of 2 degrees celcius at its left hand end D0.

(a) Give a mathematical description (some equations) of all these con-
ditions placed on u(x, t), 0 ≤ x ≤ a and 0 ≤ t.
Solution:

∂2u

∂x2
=

1

k

∂u

∂t

u(0, t) = 2,
∂u

∂x
(a, t) = 0

(b) Find a general solution to the equations in part (a).
Solution:

u(x, t) = 2 +
∞∑

n=1

bnsin(λnx)e−λ2
n
kt

where λn = (2n−1)π
2a

.

(3) Let H(x, t) denote the total heat contained within the portion of the
rod between D0 and Dx. Recall that H(x, t) =

∫ x

0 ρcAu(y, t)dy (see page
136 of text).

Suppose that the rod is insulated at its right hand end Da and that
H(a, 2) < H(a, 0). Then show that ∂u

∂x
(0, t0) > 0 holds for some 0 ≤ t0 ≤ 2.

Solution: The rod can loose heat only thru the disc D0. It must loose heat
thru the disc D0 at some time 0 ≤ to ≤ 2 because H(a, 2) < H(a, 0). Thus
the rate of heat flow thru D0 at time to — which is equal to q(0, to)A —
must be negative; i.e. q(0, to) < 0. Since q(x, t) = −κ∂u

∂x
(x, t) (why?), it

follows that ∂u
∂x

(0, to) > 0. 1
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(4) Suppose that u(x, t) satisfies u(x, 0) = 3 in addition to the properties of
problem (2)(a) above.

(a) Compute H(a, 0) and limitt→∞H(a, t).
Solution: H(a, 0) = 3aρcA. limitt→∞H(a, t) should equal to the
heat content of the bar for the steady state solution v(x). Note that
v(x) = 2; so the heat content for the steady state solution is 2aρcA.

(b) Verify that ∂u
∂x

(0, t) > 0 for all t > 0. (Hint: Write u(x, t) as an
infinite series and compute its x-derivative term by term.)
Solution: u(x, t) is the solution to the equations of (2)(a) and the
initial condition u(x, 0) = 3. Thus u(x, t) is equal to the infinite
series of given in (2)(b), where the bn in (2)(a) are given by bn =
2
a

∫ a

0 sin(λnx)dx = 2
aλn

. Thus ∂u
∂x

(0, t) =
∑∞

n=1
2
a
e−λ2

n
kt, which is

clearly positive for all t > 0.
(c) Use part (b) to verify that H(a, t) is a decreasing function in t.

Solution: Using Fourier’s Law, and part (b) of this problem, we
conclude that q(x, t) < 0 for all t. Thus heat is flowing out of the
rod at D0 for all t > 0 ; implying that the heat content of the rod
H(a, t) is decreasing for all t > 0.

(5) For all 0 ≤ x ≤ π and 0 ≤ t suppose that the following equations hold
for the function u(x, t):

(i)
∂2u

∂x2
(x, t) =

∂2u

∂t2
(x, t)

(ii) u(0, t) = 0, u(π, t) = 0

(iii) u(x, 0) = sin(x),
∂u

∂t
(x, 0) = sin(x)

(a) find the d’Alembert solution to these equations.

Solution: u(x, t) = sin(x+t)+sin(x−t)
2 + cos(x−t)−cos(x+t)

2
(b) find the Fourier type solution to these equations.

Solution: u(x, t) =
∑∞

n=1 sin(nx)(ancos(nt) + bnsin(nt)), where
an = 2

π

∫ π

0 sin(x)sin(nx)dx and bn = 2
nπ

∫ π

0 sin(x)sin(nx)dx. Thus

u(x, t) = sin(x)(cos(t) + sin(t)).

(c) does this vibrating string ever return to its original position?
Solution: Using the solution in (b) above, we see that u(x, t) is
periodic of period 2π in the t variable. So the string returns to its
original position after 2π amount of time has elapsed.

(6) Show that if u1(x, t) and u2(x, t) both satisfy equations (i),(ii) in problem
(5), then u(x, t) = α1u1(x, t)+α2u2(x, t) also satisfies (i),(ii) in problem (5)
for any real numbers α1, α2.
Solution: This uses the homogeneity of (i)(ii).
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To verify (i):

∂2u

∂x2
+

∂2u

∂y2
=

2∑
i=1

αi(
∂2ui

∂x2
+

∂2ui

∂y2
) =

2∑
i=1

αi
1

c2

∂2ui

∂t2
=

1

c2

∂2u

∂t2
.

To verifiy (ii): u(0, t) =
∑2

i=1 αiui(0, t) =
∑2

i=1 αi0 = 0; u(a, t) =∑2
i=1 αiui(a, t) =

∑2
i=1 αi0 = 0.

(7) Do problem (11) on page 232 of the text.

(8) Suppose that u(x, t), 0 ≤ x, t, satisfies

∂u

∂x
(x, t) = −

1

c

∂u

∂t
(x, t)

u(0, t) = 0

u(x, 0) = f(x)

for some given differentiable function f(x).

(a) Show that u(x, t) also satisfies

∂2u

∂x2
(x, t) =

1

c2

∂2u

∂t2
(x, t)

and
∂u

∂t
(x, 0) = −cf ′(x).

Solution: The first equality is derived as follows:

∂2u

∂x2
=

∂

∂x
(
∂u

∂x
) =

∂

∂x
(
−1

c

∂u

∂t
) =

−1

c

∂

∂x
(
∂u

∂t
) =

−1

c

∂

∂t
(
∂u

∂x
) =

−1

c

∂

∂t
(
−1

c

∂u

∂t
) =

1

c2

∂2u

∂t2

The second equality is derived as follows:

∂u

∂t
(x, 0) = −c

∂u

∂x
(x, 0) = −cf ′(x).

(b) Solve for u(x, t) in terms of the function f .
Solution: In part (a) we showed that u satisfies the wave equation
and has initial position u(x, 0) = f(x) and initial velocity ∂u

∂t
(x, 0) =

g(x) = −cf ′(x). Thus — by d’Alembert — we have that

u(x, t) =
1

2
(f(x + ct) + fo(x − ct) + G(x + ct) − Ge(x − ct))

where

G(x) =
1

c

∫ x

0
g(s)ds =

1

c

∫ x

0
−cf ′(s)ds = −

∫ x

0
f ′(s)ds = −(f(x) − f(0)).

Combining these last two equalities we get that

u(x, t) =
1

2
(fo(x − ct) + fe(x − ct)).
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Note that 1
2(fo+fe) = f̂ — where f̂(x) = f(x) if x ≥ 0 and f̂(x) = 0

if x < 0.
(c) Give a physical description of the solution of part (b).

Solution: This is a traveling wave, moving from left to right.

(9) A real valued function u(x, y) of the two real variables x, y is harmonic

if it satisfies
∂2u

∂x2
+

∂2u

∂y2
= 0

on its domain.

(a) If u(x, y) =
∑

0≤i+j≤3 ai,jx
iyj , and u is harmonic in a disc of radius

2 centered at (-3,4), then prove that u is harmonic on the whole
plane.

Solution: u is harmonic on the disc iff ∂2u
∂x2 + ∂2u

∂y2 = 0 holds on the

disc.
Note that ∂2u

∂x2 = 2a2,1y + 6a3,0x; and ∂2u
∂y2 = 2a1,2x + 5a0,3y. Thus

we have that u is harmonic on the disc iff

2a2,1 + 5a0,3 = 0

and

6a3,0 + 2a1,2 = 0.

Note that these last two equalities also equivalent to u being har-
monic on the whole plane.

(b) It is a fact that if u is harmonic on a finite rectangle R = {(x, y) |
a ≤ x ≤ b, c ≤ y ≤ d}, then it takes on neither a maximum value
nor a minimum value in the interior of this rectangle {(x, y) | a <

x < b, c < y < d}. Prove this fact under the additional hypothesis

that ∂2u
∂x2 does not vanish in the interior of the rectangle.

Solution: If u takes on a maximum or minimum at a point p inside
of R, then p must be a critical point for u. Now apply the second
derivative test for u at p; you will see (using the hypothesis for u)
that p is a saddle point for u.

(10) Consider the following 2-dimensional heat problem:

∂2u

∂x2
+

∂2u

∂y2
=

1

k

∂u

∂t

u(x, 0, t) = 0, u(x, b, t) = 0

u(0, y, t) = 3sin(
2π

b
y), u(a, y, t) = −sin(

5π

b
y)

u(x, y, 0) = x + y

Find the steady state solution for this problem.
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Solution: The steady state solution v(x, y) satisfies the following equati0ns:

∂2v

∂x2
+

∂2v

∂y2
= 0

v(x, 0) = 0, v(x, b) = 0, v(0, y) = 3sin(
2π

b
y), v(a, y) = −sin(

5π

b
y).

So we may use the results of section 4.2 (with the roles of x, a and y, b

reversed) to conclude that

v(x, y) =
∞∑

n=1

(aneλnx + bneλnx))sin(λny)

where λn = nπ
b

. We can solve for an, bn by comparing the above form of
v(x, y) with the last two boundary conditions. Thus 3sin(λ2y) = v(0, y) =∑∞

n=1(an + bn)sin(λny), which implies that

3 = a2 + b2

0 = an + bn, n 6= 2.

Also −sin(λ5y) = v(a, y) =
∑∞

n=1(aneλna + b−λna
n )sin(λny), which implies

−1 = a5e
λ5a + b5e

−λ5a

0 = aneλna + bne−λna, n 6= 5.

We can solve the preceeding 4 displayed equalities for an, bn: in particular
an = 0 = bn if n 6= 2, 5.


