PRACTICE MIDTERM FOR MAT 341

(1) Consider the function $f(x)=2 x-1, \quad 0<x<2$.
(a) Compute the Fourier sine series for $f(x)$. At each $x \in[-4,6]$ compute the value of this series.
(b) Compute the Fourier cosine series for $f(x)$. At each $x \in[-4,6]$ compute the value of this series.
(2) Set $f(x)=2+\sum_{n=1}^{\infty} \frac{\cos (n x)}{n^{4}}+\sum_{n=1}^{\infty} \frac{\sin (n x)}{n^{2}}$.
(a) Explain why $f(x)$ converges for each value of x.
(b) Explain why $f(x)$ is a periodic function of period 2π.
(c) Explain why $f(x)$ is a continuous function.
(d) For each positive integer n find the value of the integral $\int_{-\pi}^{\pi} f(x) \cos (n x) d x$.
(3) Set $w(x, t)=\sin (r x) e^{s t}$.
(a) Show that $w(x, t)$ statisfies

$$
\frac{\partial^{2} w}{\partial x^{2}}=\frac{1}{k} \frac{\partial w}{\partial t}
$$

iff $-r^{2}=\frac{s}{k}$.
(b) Show that $w(x, t)$ satisfies all of the following equalities

$$
\begin{gathered}
\frac{\partial^{2} w}{\partial x^{2}}=\frac{1}{k} \frac{\partial w}{\partial t} \\
w(0, t)=0, w(a, t)=0
\end{gathered}
$$

$$
\text { iff } r=\frac{n \pi}{a} \text { and } s=-\frac{k n^{2} \pi^{2}}{a^{2}} .
$$

(4) Find $u(x, t)$ which satisfies all the following equalities:

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{2} \frac{\partial u}{\partial t} \\
u(0, t)=0, \quad u(\pi, t)=1 \\
u(x, 0)=\frac{x}{\pi}+3 \sin (2 x)-\sin (7 x) .
\end{gathered}
$$

What is a physical situation which these equations describe?
(5) Consider the equations

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{k} \frac{\partial u}{\partial t} \\
u(0, t)=T_{0}, \quad-\kappa \frac{\partial u}{\partial x}(a, t)=\left(u(a, t)-T_{1}\right) h
\end{gathered}
$$

where κ, h are positive constants and T_{0}, T_{1} are constants.
(a) What is a physical situation that these equations describe?
(b) Find the "steady state" solution to these equations.
(c) Why is the "steady state" solution important - both physically and mathematically?

