
MAT 341 – Applied Real Analysis
Spring 2015

Midterm 2 – Solutions – April 16, 2015

NAME:

Please turn off your cell phone and put it away. You are NOT allowed to use a
calculator.

Please show your work! To receive full credit, you must explain your reasoning and
neatly write the steps which led you to your final answer. If you need extra space, you
can use the other side of each page.

Academic integrity is expected of all students of Stony Brook University at all times,
whether in the presence or absence of members of the faculty.
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Problem 1: Consider the heat equation

∂2u

∂x2
= 4

∂u

∂t

on the interval 0 < x < 2, with boundary conditions

∂u

∂x
(0, t) = 10, u(2, t) = 100, for all t > 0.

a) (8 points) What is the steady-state temperature distribution?

Solution. The steady-state solution v(x) satisfies v′′(x) = 0 so v(x) = Ax+B. From
v′(0) = 10 and v(2) = 100 we find A = 10 and B = 80. So v(x) = 10x+ 80. �

b) (12 points) Find all the product solutions w(x, t) = φn(x)Tn(t) that satisfy the PDE
and the boundary conditions for the transient solution. You are NOT asked to find
the general solution!

Solution. The transient solution w(x, t) satisfies wxx = 4wt and wx(0, t) = 0 and
w(2, t) = 0. We write w(x) = φ(x)T (t) and get φ′′T = 4φT ′. The boundary conditions
are φ′(0) = 0 and φ(2) = 0. Separating the variables we write φ′′

φ
= 4T ′

T
= −λ2, so

φ′′ + λ2φ = 0 and T ′ + 1
4
λ2T = 0. The second equation gives T (t) = e−

λ2

4
t. The

first equation gives φ(x) = c1 cos(λx) + c2 sin(λx). From φ′(0) = 0 we find c2 = 0, so

φ(x) = c1 cos(λx). From φ(2) = 0 we find cos(2λ) = 0 so λ = (2n−1)π
4

, for n = 1, 2, . . .

The product solutions are

w(x, t) = φn(x)Tn(t) = cos

(
(2n− 1)π

4
x

)
e−

(2n−1)2π2

64
t,

for n = 1, 2, . . . �
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Problem 2: (20 points) Find the Fourier integral representation of the function f(x) given
below:

f(x) =

{
π if 0 < x < 1

0 otherwise.

Solution. The Fourier integral representation of the function f(x) is∫ ∞
0

[A(λ) cos(λx) +B(λ) sin(λx)] dλ,

where

A(λ) =
1

π

∫ ∞
0

f(x) cos(λx) dx =
1

π

∫ 1

0

π cos(λx) dx =

∫ 1

0

cos(λx) dx =
sin(λ)

λ
,

and

B(λ) =
1

π

∫ ∞
0

f(x) sin(λx) dx =
1

π

∫ 1

0

π sin(λx) dx =

∫ 1

0

sin(λx) dx =
1− cos(λ)

λ
.

Putting everything together we find that

f(x) =

∫ ∞
0

[
sin(λ)

λ
cos(λx) +

1− cos(λ)

λ
sin(λx)

]
dλ.

�
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Problem 3: (20 points) Consider the heat conduction problem in a metal rod of semi-infinite
length that is insulated on the sides:

∂2u

∂x2
=
∂u

∂t
, 0 < x <∞, t > 0

u(0, t) = 0, t > 0,

whose initial temperature distribution is u(x, 0) = f(x) for 0 < x <∞, where

f(x) =

{
1 if 0 < x < 1

0 otherwise.

Find the temperature u(x, t) if we further assume that u(x, t) remains finite as x→∞.

Solution. In this problem the constant k is 1. The general solution of this PDE is given
by

u(x, t) =

∫ ∞
0

B(λ) sin(λx)e−λ
2t dλ,

where

B(λ) =
2

π

∫ ∞
0

f(x) sin(λx) dx =
2

π

∫ 1

0

sin(λx) dx =
2

π

(− cos(λx))

λ

∣∣∣∣1
0

=
2(1− cos(λ))

πλ
.

Therefore the solution is

u(x, t) =
2

π

∫ ∞
0

1− cos(λ)

λ
sin(λx)e−λ

2t dλ.

�
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Problem 4:

a) (10 points) Find the eigenvalues λn and eigenfunctions φn(x) of the problem:

φ′′ + λ2φ = 0, 0 < x < 1

φ(0) = 0, φ′(1) = 0

Solution. If λ = 0 then φ(x) = Ax + B, but φ′(1) = A = 0 and φ(0) = B = 0. It
follows that λ = 0 is not an eigenvalue. We get that φ(x) = c1 cos(λx) + c2 sin(λx)
is the general solution of this ODE. From φ(0) = 0 we find that c1 = 0. From

φ′(1) = c2λ cos(λ) = 0 we find that cos(λ) = 0 so λ = (2n−1)π
2

for n = 1, 2, . . .

The eigenvalues are λn = (2n−1)π
2

, while the eigenfunctions are φn(x) = sin(λnx), for
n = 1, 2, . . . �

b) (10 points) Find the expression of the function f(x) = x, 0 < x < 1 in terms of these
eigenfunctions. Does this series converge at x = 1?

Solution. We write f(x) =
∞∑
n=1

cnφn(x), where

cn =

∫ 1

0
φn(x)f(x) dx∫ 1

0
φ2
n(x) dx

=

∫ 1

0
x sin

(
(2n−1)π

2
x
)
dx∫ 1

0
sin2

(
(2n−1)π

2
x
)
dx

.

Using the formulas at the end of the exam we compute

∫ 1

0

x sin

(
(2n− 1)π

2
x

)
dx =

sin
(

(2n−1)π
2

)
π2

4
(2n− 1)2

=
4

π2

(−1)n+1

(2n− 1)2

and ∫ 1

0

sin2

(
(2n− 1)π

2
x

)
dx =

1− cos((2n− 1)πx)

2

∣∣∣∣1
0

=
1

2

It follows that for 0 < x < 1 we have

x =
∞∑
n=1

8

π2

(−1)n+1

(2n− 1)2
sin

(
(2n− 1)π

2
x

)
.

When x = 1 the sum becomes
∞∑
n=1

8

π2

1

(2n− 1)2
<

8

π2

∞∑
n=1

1

n2
, which converges. �
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Problem 5: (20 points) Solve the vibrating string problem:

∂2u

∂x2
=

1

4

∂2u

∂t2
, 0 < x < 1, t > 0;

u(0, t) = 0, u(1, t) = 0, t > 0;

u(x, 0) = sin(3πx), 0 < x < 1;

∂u

∂t
(x, 0) = sin(5πx), 0 < x < 1.

Explain why u(x, t+1) = u(x, t), which means that the solution to this problem is a function
that is periodic in time of period 1.

Solution. In this problem a = 1 and c = 2. The general solution to this PDE is given by

u(x, t) =
∞∑
n=1

[an cos(2nπt) + bn sin(2nπt)] sin(nπx).

We check the initial conditions

u(x, 0) =
∞∑
n=1

an sin(nπx) = sin(3πx),

so a3 = 1 and an = 0 otherwise. From

∂u

∂t
(x, 0) =

∞∑
n=1

bn2nπ sin(nπx) = sin(5πx),

we find 10πb5 = 1 and so b5 = 1
10π

. The remaining bn are all zeros. The solution to this
problem is

u(x, t) = cos(6πt) sin(3πx) +
1

10π
sin(10πt) sin(5πx).

Clearly u(x, t+ 1) = u(x, t) since cos(6πt) and sin(10πt) are both periodic of period 1. �
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Some useful formulas & trigonometric identities:∫
x cos(ax) dx =

cos(ax)

a2
+
x sin(ax)

a
+ C

∫
x sin(ax) dx =

sin(ax)

a2
− x cos(ax)

a
+ C

sin2(x) =
1− cos(2x)

2
cos2(x) =

1 + cos(2x)

2

sin(ax) sin(bx) =
cos((a− b)x)− cos((a+ b)x)

2

sin(ax) cos(bx) =
sin((a− b)x) + sin((a+ b)x)

2

cos(ax) cos(bx) =
cos((a− b)x) + cos((a+ b)x)

2
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