Name:

MAT 341 APPLIED REAL ANALYSIS
LECTURE 01 FINAL EXAM
DECEMBER 20, 2018

1.D.:

The test is a closed book exam, sheets from Midterms 1 and 2 and an
extra sheet (letter size, both sides) with formulas can be consulted. No
other sources or notes can be used; cell phones, tablets and calculators
are not allowed. Answer each question in the space provided and on
the reverse side of the sheets. Show your work: no credit will be given
for the unjustified answers.
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1. (a) (10 points) Find the Fourier series of the function f(z) =«
on the interval —1 <z < 1.
(b) (5 points) Find the Fourier series of the function f(z) = z?
on the interval —1 < z < 1 by integrating the Fourier series
in part (a).
(c) (5 points) Use part (b) to evaluate the sum of the series

00 _1)n1
2( n)2 ‘

(Hint: Find the mean value of f(z) =2? on —1 <z < 1.)
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2. Find the eigenvalues and the eigenfunctions and state the or-
thogonality relation for the eigenfunctions of the following sin-
gular Sturm-Liouville eigenvalue problems.

(a) (15 points)
(") + A =0, 0<zx<a,
©(0) is bounded, ¢(a) = 0.
(b) (15 points)
(1 -2 +Ap=0, —1<uz<]l,
¢(—1) is bounded, ©(1) is bounded.
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3 (a) (5 points) Find the steady-state solution of the problem

u = Ku,,, 0<z<I1, t>0,
u(0,t) =1, u(l,t) = 2, t>0,
u(z,0) =1, 0<z<l.

(b) (15 points) Solve the initial value-boundary value problem
in part (a).
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4. (a) (10 points) Find the solution u(p, ) of Laplace’s equa-
tion in the disk p < R, satisfying the boundary condition

u(R, ) =14 cos2¢ + 3sin3p, —m < ¢ < 7.
(b) (10 points) Find the bounded solution u(p, ¢) of Laplace’s
equation in the exterior disk p > R, satisfying the bound-
ary condition u( R, ¢) = 3+4cosdp+5sinTp, —m < ¢ < 7.
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5. (a) (10 points) Use the d’Alembert solution of the wave equa-
tion to solve the problem

Yt = C*Yss, 0<s<a, 0<t,
y(0,t) =0, y(a,t) =0, 0<t,
y(870):07 0<S<CL,

yi(s,0) = sin (W—S> , O0<s<a.
a

(b) (5 points) Sketch the solution at times ¢ = a/2c and t =
ajc.



MAT 341 FINAL EXAM LECTURE 01 7

6. Consider the vibrating membrane problem: two-dimensional
wave equation
_ 2 2, .2 2
U = (Ugz +Uyy), 2°+Y <a
with the boundary condition u(x,y,t) = 0 if 2% + y? = a® and
initial conditions
u(p7<)070) :ul(p7 @) and Ut(Pa 9070) :U2(p7 Qp)a

where 0 < p < a and —7 < p < 7.

(a) (15 points) Find the solution u(p,p,t) of the vibrating
membrane problem in the case where u;(p,¢) = 1 and
Uz (p7 S0> = 0.

(b) (15 points) Find the solution u(p,¢,t) of the vibrating
membrane problem in the case where uy(p, ) = 0 and

us(p, ) = Jo (%) sin2¢ + 3.J; (@) sin Te.
a a

(Here ayypy, is the n-th zero of the Bessel function J,,(z) of
order m).
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7. Consider the initial-value problem for the heat equation
wp = K (Ugy + wyy)
in the square 0 < =z < 1, 0 < y < 1 with the non-
homogeneous boundary conditions
uw(0,y,t) =1, u(l,y,t) =2, u,(z,0,t) =0, u,(z,1,t) =0.

(a) (10 points) Find the steady-state solution.

(b) (15 points) Solve the initial-value problem for the
heat equation with the non-homogeneous boundary
conditions given above and the initial condition

u(z,y,0) = 1.
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8. (20 points) Find the solution of three-dimensional Laplace’s
equation in the ball of radius a, satisfying the boundary
condition

u(a,,p) = cosfh + 3 cos26.
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Extra Credit (25 points)
(a) (10 points) Find the eigenvalues and the eigenfunctions of
the following Sturm-Liouville eigenvalue problem

(") + Az =0, 0<zx<a,
©(0) is bounded, ¢'(a) = 0.

(b) (15 points) Using the generating function for the Legendre
polynomials

P,(s)t", —1<t<1,
V1—2st+ VI_2st+ 22 Z

prove the recurrence relatlon

(n+1)P,y1(s) = (2n+ 1)sP,(s) — nP,_1(s),

where P_y(s) = 0.
(Hint: Differentiate the generating function with respect
to t and rearrange the terms.)



