MAT203 Calculus III. Midterm Exam 2

11/8/2019

In Memory of Felix Hausdorff (November 8, 1868 - January 26, 1942)

Problem	Points
Problem 1(25pts)	
Problem 2(25pts)	
Problem 3(25pts)	
Problem 4(25pts)	
Total (100pts)	

Note: You are not allowed to use any type of CALCULATORS or CELL PHONES.

Statement of Ethics regarding this exam

I agree to complete this exam without unauthorized assistance from any person, materials, or device.

Signature:	

Date:	

Name: (Please print.) _____ II

ID #: _____

Recitation Day_____ Time _____ TA's Name

1.[25pts]

(1) Compute the partial derivatives $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$ of the function

$$F(x,y) = \frac{x}{x^2 + y^2}.$$

(2) Assume that the two-variable function z = z(x, y) is defined implicitly by the equation

$$\ln(x+2z) + 3xy^2 = 200.$$

Then compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ as functions of x, y and z.

2. [25pts]

- (1) Compute the gradient of the function $F(x, y, z) = \ln(x + y^2 + z^3)$ at (1, 0, 1).
- (2) Let $\boldsymbol{v} = (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ and let $F(x, y) = \sin(xy) + e^{xy}$, compute the directional derivative $D_{\boldsymbol{v}}F(x, y)$ at (0, 0).
- (3) Find the equation of the tangent plane and the normal line of the surface defined by xy + yz + xz = 9 at the point (1, 1, 4).

3. [25pts] Find all the local maxima, local minima and saddle points of the following functions:

- (1) $f(x,y) = x^3 + 2(x-y)^2 3x$
- (2) $f(x,y) = x^3 y^3 + 3xy + 15$

4.[25pts]

- (1) Let x > 0, y > 0 and z > 0 satisfy x + 2y + 3z = 6. Compute the maximum of the function f(x, y, z) = xyz under the constraint x + 2y + 3z = 6.
- (2) Find the maximal and minimal distance from the curve $x^2 + y^2 xy 1 = 0$ to the origin (0, 0).

Use this page as scratch paper.

Use this page as scratch paper.

Use this page as scratch paper.