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• Class problem 1: identify the conic section determined by the equation x2 − 2y2 + z2 = 0.
• We are now beginning Chapter 12 on vector-valued functions. These are functions whose input

(domain) is a single variable and whose output (codomain or range) is a vector (or, equivalently, an
element of Rn for some n ≥ 2). Think of this chapter as a sort of warm-up for the main part of the
course. In later chapters, we’ll look at functions whose input/domain is multiple variables, which is
the true “multivariable calculus”.
• Recall that a vector-valued function has the form r(t) = f(t)i + g(t)j + h(t)k = 〈f(t), g(t), h(t)〉.

(We’ll state things for R3 for simplicity. It should be clear how to adapt everything to R2 or even
Rn.) It is conventional to use the variable t here to suggest time and so (x, y, z) can be used for
spatial coordinates. The ideas of differentiation and integration extend to vector-valued functions
in the obvious way.
• The notions of limit and continuity are defined component-wise:

lim
t→a

r(t) = 〈lim
t→a

f(t), lim
t→a

g(t), lim
t→a

h(t)〉,

provided the limits on the left exist. Next, r is continuous at a if r(a) = limt→a r(t).
• The derivative of a vector-valued function at t is defined as the difference quotient

r′(t) = lim
∆t→0

r(t+ ∆t)− r(t)

∆t

provided that this limit exists. In this case, we say that r is differentiable at t.
• It is straightforward to show that this definition agrees with differentiating each component function

in the sense of single-variable calculus. That is, if r is differentiable at t, then

r′(t) = f ′(t)i + g′(t)j + h′(t)k.

Conversely, if f ′(t), g′(t), h′(t) all exist, then r is differentiable at t.
• Differentiation rules like the product rule and chain rule extend to vector-valued functions in the

natural way:

d

dt
(c r(t)) = c r′(t)

d

dt
(r(t) + u(t)) = r′(t) + u′(t)

d

dt
(w(t)r(t)) = w(t)r′(t) + w′(t)r(t)

d

dt
(r(t) · u(t)) = r(t) · u′(t) + r′(t) · u(t)

d

dt
(r(t)× u(t)) = r(t)× u′(t) + r′(t)× u(t)

d

dt
r(w(t)) = r′(w(t))w′(t).

These can all straightforward to check.
• Observe that the derivative r′ is also a vector-valued function. In particular, we can take multiple

derivatives of r just as in calculus of one variable. Geometrically, r′(t) represents the tangent vector
of r at t. In many cases, r(t) represents the position of a particle traveling through space in time,
and r′(t) then is the velocity of this particle. The second derivative r′′(t) is the acceleration of this
particle. Speed is the magnitude of velocity: ‖r′(t)‖.
• We can find an antiderivative for r by integrating each component function. This is called the
indefinite integral of r. Explicitly,∫

r(t) dt =

(∫
f(t) dt

)
i +

(∫
g(t) dt

)
j +

(∫
h(t) dt

)
k.
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• The definite integral is defined similarly:∫ b

a

r(t) dt =

(∫ b

a

f(t) dt

)
i +

(∫ b

a

g(t) dt

)
j +

(∫ b

a

h(t) dt

)
k.

As in calculus of one variable, one can take the definite integral of velocity from a to b to find the
change in position of a particle between times a and b. Likewise, one can take the definite integral
of acceleration from a to b to find the change in velocity of a particle between times a and b.
• Even if r is differentiable everywhere with continuous derivative, the curve traced by r may have

corners or cusps (called nodes) at points t where r′(t) = 0. (On the other hand, if ‖r′(t)‖ > 0 for
all t, then a continuously differentiable function traces out a smooth curve.)
• A historically important example is planetary motion. This is beyond the scope of this class, but

look up Kepler’s laws if you are interested. Here, the particle is a planet that moves in relation to a
sun located at the origin based on the gravity of the sun. The motion is governed by the differential
equation

r′′ =
C

‖r‖2

(
−r
‖r‖

)
,

where C is a constant, since gravity obeys an inverse square law. It can be shown that the trajectory
of a planet is a conic section: an ellipse, parabola or hyperbola. Note that a planet moves with
varying speed (faster when the planet is closer to the sun), so r is not the standard parametrization
of an ellipse/parabola/hyperbola.
• A more manageable example is projectile motion. This is a model of particle motion in which gravity

exerts a constant downward force. We ignore air resistance and other forces. Working in imperial
units, we take the value −32j as the acceleration due to gravity: r′′(t) = −32j. The motion of the
particle is completely determined by its initial position r0 and initial velocity v0. Integrating r′′

twice, we have
r(t) = −16t2j + v0t+ r0.

• Example. Consider an archer who shoots an arrow from an initial height of 4 ft. at a speed of 225
ft./s and initial angle θ over flat ground. How far does the arrow travel horizontally before hitting
the ground?

Applying the previous equation, we have

r(t) = 225 cos(θ)ti + (−16t2 + 225 sin(θ)t+ 4)j.

The time when the arrow hits the ground is the solution to the quadratic equation

−16t2 + 225 sin(θ)t+ 4 = 0.

From the quadratic equation, the answer is

225 cos(θ)

225 sin(θ) +
√

2252 sin2(θ) + 162

32

 ft.

You might be curious about the farthest possible distance our archer can shoot. This occurs for
θ = π/4 and gives ≈ 1586.02 ft. In real life, we’d expect the actual distance to be somewhat less
because of air resistance.
• Example. Circular motion. The position of a particle is given by the equation

r(t) = 〈3 sin(2t), 3 cos(2t)〉,
where 0 ≤ t ≤ π/2. Sketch the trajectory of the particle, including the initial point and terminal
point. Find the velocity, speed and acceleration.

The answers are: r′(t) = 〈6 cos(2t),−6 sin(2t)〉, ‖r′(t)‖ = 6 and r′′(t) = 〈−12 sin(2t),−12 cos(2t)〉.
Observe how the acceleration is a scalar multiple of position, and both position and acceleration are
orthogonal to velocity. This is the nature of circular motion at a constant speed.


