
MAT 203 LECTURE OUTLINE 9/29

• Today we are going to continue with the topic of finding extrema of a function. In applications,
we can think of this as optimization of a function. We will start by doing a typical optimization
problem.
• Example. Find the maximum volume of a box [0, x] × [0, y] × [0, z] where we require the vertex
(x, y, z) to lie on the plane 6x+ 4y + 3z = 24. That is, we want to maximize the function f(x, y) =
xyz = xy(24− 6x− 4y)/3. (The answer is 64/3.)
• Note: the textbook contains a section on “least squares”. In the interest of time, we will not cover

it in this course.
• We turn to another type of optimization problem: constrained optimization. This means that we

do not optimize the target function over all values of a function, but just over those values satisfying
a given constraint. For example, imagine we are constructing a warehouse. There are two variables
we’d like to optimize: the size of the warehouse, and the cost of construction. Clearly, we cannot
optimize both of these at the same time, since a larger building would generally cost more. What
we can do is to choose a fixed size or a fixed cost, and then try to optimize the other variable subject
to that constraint.
• There is a very nice method to solve constrained optimization problems called Lagrange multipliers.

This will be the final topic of Chapter 13.
• It is easiest to explain the method and the idea behind it by using an example. We’ll use the example

from the textbook. Consider the ellipse
x2

32
+
y2

42
= 1.

Problem: find the rectangle with vertices (±x,±y) of largest area inscribed in this ellipse.
Note that the area of this rectangle is 4xy. Thus we are optimizing the function f(x, y) = 4xy

subject to the constraint g(x, y) = x2

32 + y2

42 = 1.
At this point, take a look at Figure 13.79 in the textbook showing the contour lines of both

f(x, y) and g(x, y). The key idea is that the any extrema must occur when the contour lines for f
and g are tangent. Equivalently, this means that ∇f(x, y) and ∇g(x, y) must be scalar multiples of
one another: ∇f(x, y) = λ∇g(x, y) for some scalar λ.

We compute ∇f(x, y) = 〈4y, 4x〉 and ∇g(x, y) = 〈2x/9, y/8〉. Thus (along with the original
constraint) we have the system 

4y = λ(2x/9)
4x = λy/8

x2

32 + y2

42 = 1

.

This is a system of three equations in three variables, so one expects this system to have a unique
solution. Typically these can be solved in an ad hoc way.

For example, it can be solved in the following way. Rearrange the first equation as λ = 18y/x.
Plug this into the second equation to get 4x = 18y2/(8x), or equivalently x2 = 9y2/16. Now use the
last equation to get y = ±2

√
2. This implies that x = ±3/

√
2.

The way we posed this problem implies that x, y are positive (in general, you have to account for
all cases). So we have (x, y) = (2/

√
2, 2
√
2), which gives a maximum area of 24.

• Here is a general statement of the method of Lagrange multipliers. Suppose we want to maximize
or minimzie the function f(x, y) subject to the constraint g(x, y) = c, where f, g have continuous
first partial derivatives. Then we can do this by solving the system of equations fx(x, y) = λgx(x, y)

fy(x, y) = λgy(x, y)
g(x, y) = c

for the variables x, y, λ. Note that we have three equations in three variables, so we expect this
equation to typically have a finite set of solutions.
• This method can be adapted to three or more variables using the relationship ∇f = λ∇g.
• Note that there is some overlap between these methods. For example, the problem in the second

bullet can be treated as a Lagrange multiplier problem.

1


