
MAT 203 LECTURE OUTLINE 9/27

• Given a function z = f(x, y) and a point (x0, y0), we can find the tangent plane to the graph of f(x, y)
at the point (x0, y0, f(x0, y0)). This is essentially the same thing as asking for the linearization of
f(x, y) at (x0, y0). Recall that the solution to this is

z = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) + f(x0, y0).

• We want to consider the same problem but for other surfaces. A surface does not need to be the
graph of a function; a simple example is the sphere, given by the equation x2+y2+z2 = 1. One way
to think of a surface is as the level set of a function of three variables: the set of points satisfying
F (x, y, z) = 0 for some differentiable function F (x, y, z).

• The same ideas we discussed about the gradient for two-variable functions apply here. Namely, the
gradient is a vector that is orthogonal to the level set F (x, y, z) = 0 at each point and that points in
the direction of maximum increase for F (x, y, z). The equation of the tangent plane at (x0, y0, z0)
is then

Fx(x, y, z)(x− x0) + Fy(x, y, z)(y − y0) + Fz(x, y, z)(z − z0) = 0.

Observe how this is consistent with the equation in the first bullet point.
• Example. Consider the hyperboloid z2 − 2x2 − 2y2 = 12. Find the tangent plane at (1,−1, 4).

This is given by x− y − 2z + 6 = 0.
• We begin section 13.8 on Extrema. We recall some definitions. Consider a function f(x, y) defined

on a planar region D.
– The region D is closed if it contains all its boundary points.
– The region D is bounded if it contained inside a ball of radius r for some r > 0.
– The maximum (or absolute maximum) of f(x, y) (if it exists) is the value M such that (i)

f(a, b) = M for some (a, b) in D, and (ii) f(x, y) ≤ M for all (x, y) in D.
– The minimum (or absolute minimum) of f(x, y) (if it exists) is the value m such that (i)

f(a, b) = m for some (a, b) in D, and (ii) m ≤ f(x, y) for all (x, y) in D.
• We also define relative/local maxima and relative/local minima to be values such that the same

property holds if we replace D by some disk around the point (a, b).
• The Extreme Value Theorem states that if D is closed and bounded, then any continuous function
f defined on D has a maximum and a minimum. That is, there is a point (a, b) in D such that
f(x, y) ≤ f(a, b) for all points (x, y) in D, and a point (c, d) in D such that f(c, d) ≤ f(x, y) for all
points (x, y) in D. If D is not closed or not bounded, then such a function f may or may not have
a maximum or maximum. Also, note that a maximum or minimum may be attained by multiple
points in D.

Convince yourself intuitively that the Extreme Value Theorem is true, and that its conclusion
may fail if D is not closed or not bounded.

• A critical point of f is a point (x, y) in the interior of a domain D where fx(x0, y0) = 0 and
fy(x0, y0) = 0, or one of these partial derivatives does not exist. Here is the main principle of this
section:

Any relative minimum or maximum must occur at a boundary point or a critical point.
• One method to classify critical points is the “second partials test”. Here is the statement:

Suppose that f(x, y) is a function with continuous second partial derivatives satisfying fx(a, b) = 0
and fy(a, b) = 0. Let

d =

∣∣∣∣ fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

∣∣∣∣ = fxx(a, b)fyy(a, b)− (fxy(a, b))
2.

(1) If d > 0 and fxx(a, b) > 0, then f has a relative maximum at (a, b).
(2) If d > 0 and fxx(a, b) < 0, then f has a relative minimum at (a, b).
(3) If d < 0, then f has a saddle point at (a, b).
(4) If d = 0, the test is inconclusive.
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