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• Recall the definition of derivative for calculus of one variable,

f ′(x) =
df

dx
(x) = lim

∆x→0

f(x + ∆x)− f(x)

∆x
.

Note the two main notations for the derivative, each with its own advantages. Also recall its
interpretation as the slope of the line tangent to the graph of f at the point x. The statement that
f ′(x) exists can be written as the statement that

f(x + ∆x) = f(x) + f ′(x)∆x + R(∆x),

where R(∆x)/∆x → 0 as ∆x → 0. (R stands for “remainder”.) To say this yet another way, the
linear function

La(x) = f(a) + f ′(a)(x− a)

(called the linearization or linear approximation of f at a) is a good approximation of f(x) near the
point a, provide that f is differentiable there.
• The most basic way to adapt this to multivariable functions is to define the partial derivative with

respect to each variable. For a function f(x, y) of two variables, the idea is to hold one variable fixed
and treat f as a function of the other variable and take the derivative with respect to this variable.
We have

fx(x, y) =
∂f

∂x
(x, y) = lim

∆x→0

f(x + ∆x, y)− f(x, y)

∆x
,

fy(x, y) =
∂f

∂y
(x, y) = lim

∆y→0

f(x, y + ∆y)− f(x, y)

∆y
.

This definition adopts to the case of R3 or Rn in the expected way.
• We can also do multiple partial derivatives. For example, the second-order partial derivatives are

denoted by fxx = ∂2f
∂x2 , fyy = ∂2f

∂y2 , fxy = ∂2f
∂y∂x , fyx = ∂2f

∂x∂y . Note that fxx = (fx)x and so forth.
• Example. Find the first- and second-order partial derivatives of f(x, y, z) = yex + x ln z.
• In the previous example, you likely noticed that fxy = fyx, fxz = fzx and fyz = fzy. In fact,

this “equality of mixed partial derivaties” is always valid for reasonably nice functions. Specifically,
it holds whenever the second-order partial derivatives are continuous. For those who are curious
about a counterexample in the general case, the function

f(x, y) =

{
xy(x2−y2)

x2+y2 if (x, y) 6= (0, 0)

0 if (x, y) = 0

has second-order partial derivatives fxy and fyx that are defined but not equal (and necessarily are
not continuous).
• Recall the notion of differential in one-variable calculus: if y = f(x), then we define dy = f ′(x)dx.

Likewise, for z = f(x, y), we define the differential

dz = fx(x, y)dx + fy(x, y)dy,

where dx (resp. dy) represents a “small change in x (resp. y)”. The point of this definition is that
dz is (ideally) a good approximation of f(x+ ∆x, y + ∆y)− f(x, y) whenever ∆x and ∆y are small,
with ∆x being substituted in for dx and ∆y for dy.

• If the first partial derivatives fx and fy are continuous, then the differential does indeed give a good
approximation for ∆z = f(x + ∆x, y + ∆y)− f(x, y). More precisely, it holds that

∆z = fx(x, y)∆x + fy(x, y)∆y + ε1∆x + ε2∆y,

for some ε1, ε2 > 0 such that ε1, ε2 → 0 as ∆x→ 0 and ∆y → 0. A function f(x, y) for which this
conclusion is true is said to be differentiable. If fx and fy are not continuous, then this conclusion
may be false. An example to illustrate this is

f(x, y) =

{
x3

x2+y2 if (x, y) 6= (0, 0)

0 if (x, y) = 0
.
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We can compute the partial derivatives to get fx(0, 0) = 1 and fy(0, 0) = 0. Thus the linearization
at (0, 0), if it were to exist, would be L(x, y) = 1 · (x − 0) + 0 · (y − 0) = x. However, L(x, y) does
not give a good approximation of f(x, y) at the origin.
• It is helpful to try graphing some of these functions.

– The “good” (that is, differentiable) function f(x, y) = x2 − y2 and its linearization L(x, y) = 0
at finer scales:

Observe how f(x, y) and L(x, y) become practically indistinguishable as we zoom in.
– The “bad” (that is, non-differentiable) function f(x, y) = x3/(x2 + y2) and its linearization

L(x, y) = x at finer scales:

As we zoom in, the shape of the graph stays the same (can you justify this algebraically from the
formula?) and so the linearization L(x, y) = x never looks like the original function f(x, y).


