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• Warmup: For a particle in motion:
– Recall the formulas for T(t), N(t), aT, aN and K.
– If aT = 0, what does that tell you about the motion of the particle?
– If aN = 0, what does that tell you about the motion of the particle?
– If K = 0, what does that tell you about the motion of the particle?

• We are now beginning chapter 13 of the book. Here, the focus is on differential calculus of
multivariable functions, i.e. functions f : R2 → R or f : R3 → R. Today we will get familiar with
graphing multivariable functions and examining limits and continuity.
• Let’s start with some examples. The variables x, y might represent location on the earth’s surface.

Surface air temperature or air pressure is then a function of the position (x, y).
• The most basic way to visualize a function is to let the z coordinate represent the value of the

function: z = f(x, y). We can then graph the function: those points (x, y, z) ∈ R3 for which
z = f(x, y).
• Another way to visualize a function is through level sets or level curves (also called contour lines).

This is familiar from contour maps such as for elevation. Contour maps are also common in weather
forecasting, where the function could be temperature or air pressure. This method has the advantage
that a function of two variables can be represented on a two-dimensional graph.
• For functions of three variables, one cannot sketch a graph of the function in 3-dimensional space.

However, one can sketch the level sets, which are typically surfaces.
• The definition of limit for multivariable functions is similar to the definition for single-variable

functions, but there is some nuance to it. Recall the “δ-ε definition” of the limit from calculus of
one variable: the statement limx→a f(x) = L means: for each ε > 0, there exists δ > 0 such that
|f(x)− L| < ε whenever 0 < |x− a| < δ. This is a formal (that is, logically precise) definition that
captures the idea that f(x) becomes arbitrarily close to L when x is sufficiently close to a.
• Now we get to the definition of limit in multivariable calculus. Suppose that the function f is

defined on an open disk centered at (x0, y0), except possibly at (x0, y0). The limit of the function f
at (x0, y0) is L, and we write

lim
(x,y)→(x0,y0)

f(x, y) = L,

if the following condition is satisfied:
For each ε > 0, there exists δ > 0 such that

|f(x, y)− L| < ε

whenever
0 <

√
(x− x0)2 + (y − y0)2 < δ.

• For functions of a single variable, x can approach x0 in one of two directions: from the right or from
the left. The limit limx→x0 f(x) exists if and only if both the left- and right-handed limits exist and
are equal.

For the limit lim(x,y)→(x0,y0) f(x, y) to exist, (x, y) must be able to approach (x0, y0) along any
path and f(x, y) should approach the same value L.
• We’ll look at some examples to get an intuition for this. Each of these functions is defined except

at the origin (0, 0).

f1(x, y) =
1

x2 + y2
,

f2(x, y) =
x2y

x2 + y2
,

f3(x, y) =
xy

x2 + y2
,

f4(x, y) =
x2y2

x2 + y2
.

For which functions fj does lim(x,y)→(0,0) fj(x, y) exist, and what is the limit? This question can be
done directly from the definition of limit.
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– For f1, the limit does not exist because f1 is unbounded near (0, 0).
– For f2, the limit does exist and is equal to zero. We can verify this from the definition: Observe

that

|f2(x, y)− 0| =
∣∣∣∣ x2

x2 + y2

∣∣∣∣ · |y| ≤ 1 ·
√
x2 + y2.

So |f2(x, y) − 0| < δ whenever
√
x2 + y2 =

√
(x− 0)2 + (y − 0)2 < δ. Thus, given ε > 0, we

choose δ = ε. Thus, from the definition of limit we see that lim(x,y)→(0,0) f2(x, y) = 0. Take
some time to really understand how we’ve used the definition of limit in this argument.

– For f3, the limit does not exist. To see this, we can let (x, y) approach (0, 0) along two
different paths. First, we have limt→0 f2(t, 0) = limt→0 0 = 0. Second, we have limt→0 f2(t, t) =
limt→0

tt
t2+t2 = 1/2. Since 0 6= 1/2, we conclude that the limit does not exist.

– For f4, the limit does exist and is equal to zero. We illustrate another way to argue this without
appealing directly to the definition: by using polar coordinates. In polar coordinates, the limit
can be written as

lim
r→0

f4(r, θ) = lim
r→0

r2 cos2(θ)r2 sin2(θ)

r2 sin(θ) + r2 cos(θ)
= lim

r→0
r2

cos(θ) sin(θ)

1
.

Since cos(θ) sin(θ) is continuous for all θ ∈ R (in fact, | cos(θ) sin(θ)| ≤ 1 for all θ ∈ R) and
r2 → 0 as r → 0, we see that limr→0 f4(r, θ) = 0.

• A function f : R2 → R is continuous at (x0, y0) if f(x0, y0) = lim(x,y)→(x0,y0) f(x, y).
If lim(x,y)→(x0,y0) f(x, y) exists but is different from f(x0, y0), then f has a removable discontinuity

at (x0, y0).
Otherwise, f has a non-removable discontinuity at (x0, y0).

• Continuity is preserved under the standard operations:
If f, g : R2 → R are continuous at (x0, y0), then so are f+g, f−g and fg. Also, f/g is continuous

at (x0, y0) provided g(x0, y0) 6= 0.


