
MAT 203 LECTURE OUTLINE 9/13

• This is the first lecture which I expect to be genuinely new material for most of the class. We will
develop a framework for understanding the motion of a particle in R3.
• Warmup: how do you take the derivative d

dt‖r(t)‖?
• Let r be a vector-valued function tracing a smooth curve C. Recall that the derivative r′(t) is

tangent to the curve C at the point r(t). A different parametrization of the curve C would produce
tangent vectors of different length. To account for this, we define the unit tangent vector

T(t) =
r′(t)

‖r′(t)‖

whenever r′(t) 6= 0.
• Next, the principal unit normal vector at t is defined as

N(t) =
T′(t)

‖T′(t)‖
.

Take a moment to think about what this represents geometrically. Since this formula contains the
derivative of the unit tangent vector, we expect N(t) to be related to the second derivative r′′(t),
that is, the acceleration of a moving particle with position r(t). We will soon make this relationship
precise.
• We can check that N(t) is orthogonal to T(t), as the name “normal vector” suggests. Why does this

make sense geometrically?
• It is a theorem that the acceleration vector r′′(t) lies in the plane determined by T(t) and N(t).

This essentially follows from the product rule. If ‖r′(t)‖ is constant, then in fact r′′(t) is a scalar
multiple of N(t). In general, we can define the tangential and normal components of acceleration
as r′′(t) ·T(t) and r′′(t) ·N(t), respectively. We can derive the formulas

aT =
d

dt
‖r(t)‖ = r′′(t) ·T(t) =

r′(t) · r′′(t)
‖r′(t)‖

and

aN = ‖r′(t)‖‖T′(t)‖ = r′′(t) ·N(t) =
‖r′(t)× r′′(t)‖
‖r′(t)‖

.

• For a curve C parametrized by a vector-valued function r(t), the curvature K at a point t is a scalar
quantity measuring the rate at which the C bends or curves at the point r(t). This is given by

K =
‖T′(t)‖
‖r′(t)‖

=
‖r′(t)× r′′(t)‖
‖r′(t)‖3

.

• Example. Consider a circle of radius r, parametrized by r(θ) = r cos(θ)i + r sin(θ)j. We compute
the curvature to be K = 1/r. Observe that K is constant, with larger curvature the smaller r is.
• The previous example gives a geometric/intuitive way to think about curvature: at the given point
r(t) on the curve C, draw a circle that best approximates C near r(t) (called an osculating circle).
Then the curvature at r(t) is 1/r, where r is the radius of the osculating circle.
• Let us add to what the textbook includes for your general awareness: if we take the cross product

of the unit tangent and normal vectors, we get the binormal vector B(t) = T(t) × N(t). The
vectors T(t), N(t), B(t) together span all of R3 and are called the Frenet–Serret frame. In addition
to the curvature K, there is a quantity called the torsion that measures the extent to which the
motion bends away from the plane determined by T(t) and N(t). From an initial starting frame,
the curvature and torsion completely determine the path of motion of the particle. Thus we have a
model of particle motion in R3. [Related personal anecdote: Some time ago, I watched the movie
“Hidden Figures” at the recommendation of my parents. When watching math movies, I’m always
curious how they incorporate math jargon. I remember (and looking now at the script confirmed)
that the writers included the phrase “Frenet frame” to fill their need for impressive-sounding math
jargon. So apparently this stuff gets used at NASA.]
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• One essential point about the definition of curvature is that it is independent of the specific
parametrization used. This suggests the idea of a standard parametrization of a curve: the arc-
length parametrization. This is the parametrization for which ‖r′(t)‖ = 1. For an arc length
parametrization r(s), we have K = ‖T ′(s)‖.
• The arc length of a curve C with parametrization r(t), a ≤ t ≤ b, is

∫ b

a
‖r′(t)‖ dt. In fact, one can

define the arc length function s : [a, b]→ [0,∞) by

s(t) =

∫ t

a

‖r′(u)‖ du =

∫ t

a

√
x′(u)2 + y′(u)2 + z′(u)2 du.

If we’re given a parametrization r(t) of a curve C, we can always find an arc-length parametrization
of the same curve by solving for t in terms of s in the formula above. Note however that this might
be computationally difficult.
• Example. Consider the curve r(t) = 3ti− tj+ t2k. Compute the tangential and normal components

of acceleration.
The answer is aT = 4t/

√
10 + 4t2 and aN = 2

√
10/
√
10 + 4t2.


