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• We have two topics today: integration in polar coordinates (Section 14.3) and applications of integration
to finding centers of mass and moments of inertia (Section 14.4).
• Let’s start with polar coordinates. This is our first example of a “change of variables”, an idea we’ll

look at more systematically in section 14.8. Recall that polar coordinates are defined by the relations
x = r cos(θ), y = r sin(θ).
• To get to the punchline, the conversion between a standard integral (i.e., in rectangular coordinates) of

a function f(x, y) over a region R and an integral in polar coordinates is∫∫
R

f(x, y) dA =

∫∫
R′
f(r cos(θ), r sin(θ)) r dA,

where R′ is the region of the (r, θ)-plane corresponding to R. To understand the derivation of this
formula, use Figures 14.24-14.27 in the textbook as a guide. To briefly summarize here: the idea is
to form a Riemann sum in polar coordinates, with the area of each polar rectangle given by ∆Ai =
ri∆ri∆θi. This can be derived by computing the area of a sector, which we did in class.
• One step in doing an integral in polar coordinates is to describe the region of integration in terms of

polar coordinates. This takes a bit of practice. See Figure 14.23 in the textbook for typical regions.
These regions are usually well-behaved with respect to polar coordinates, such as disks, sectors, and
annuli (i.e., ring-shaped regions).
• Similarly to horizontally and vertically simple regions, we can talk about r-simple and θ-simple regions

of integration. An r-simple region has the form {(r, θ) : α ≤ θ ≤ β, 0 ≤ g1(θ) ≤ r ≤ g2(θ)} for some
constants α, β and functions g1(θ), g2(θ). In this case the formula for integration in polar coordinates
becomes ∫∫

R

f(x, y) dA =

∫ β

α

∫ g2(θ)

g1(θ)

f(r cos(θ), r sin(θ)) r dr dθ.

For a θ-simple region, we have the formula∫∫
R

f(x, y) dA =

∫ r2

r1

∫ h2(r)

h1(r)

f(r cos(θ), r sin(θ)) r dθ dr.

• Example.
∫∫

R

(x2 + y) dA, where R is the upper half-disk of radius 2 in the plane.

The setup is ∫∫
R

(x2 + y) dA =

∫ π

0

∫ 2

0

(r2 cos2(θ) + r sin(θ))r dr dθ,

which integrates to 2π + 16/3.

• Example.
∫∫

R

x dA, where R is the disk of radius 1 centered at (1, 0).

The setup for this problem is more difficult, since it requires finding a formula for the boundary circle
(x− 1)2 + y2 = 1 in polar coordinates. This formula is r = 2 cos(θ), where 0 ≤ r ≤ π. (not 0 ≤ r ≤ 2π).
The integral in polar coordinates is then∫∫

R

x dA =

∫ π

0

∫ 2 cos(θ)

0

r cos(θ)r dr dθ.

To evaluate this integral, you need to use the identity cos2(α) = (1 + cos(2α))/2 twice. The answer is
π.
• Now, let’s look at the applications. We’ve already discussed the basic physical interpretation of double

integrals as “volume under a surface”. These applications will build on this idea.
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• We consider a thin object with variable material or density (the book calls such an object a lamina). We
represent such a lamina as a region R in the planar with with planar coordinates (x, y) and a function
ρ(x, y) representing the mass density. The first problem is to find the total mass of a lamina. This is
done simply by integrating the density ρ over R.
• The next problem, and a somewhat more difficult one, is finding the center of mass of a lamina. Physi-

cally, if you were to hold up the lamina with one finger in such a way that the lamina doesn’t fall over,
you would place your finger at the center of mass.
• In simple cases such as objects of constant density with nice symmetry, the solution to finding the center

of mass is obvious. For example, the center of mass of a disk or square of constant density is the center
point of the disk or square.
• In general, the problem can be solved by computing an integral. The idea is as follows. Denote the

center of mass by (x̄, ȳ). To find x̄, we integrate the function x weighted by the density ρ, then divide by

the total mass m: x̄ =
1

m

∫∫
R

x ρ(x, y) dA. The quantity My =

∫∫
R

x ρ(x, y) dA is called the moment

of mass with respect to the y-axis and is denoted in the textbook by My. There is a general concept in
math and physics called a moment meaning “product of a physical quantity and a distance”, of which
this is an example, though we won’t worry much about this for the purpose of this class. We find ȳ

similarly: ȳ =
Mx

m
=

1

m

∫∫
R

y ρ(x, y) dA, where Mx =

∫∫
y ρ(x, y) dA is called the moment of mass

with respect to the x-axis.
• Example. Find the center of mass of a lamina the shape of the region under the parabola 4 − x2 and

above the x-axis. Assume a constant density 1.

First, the mass is
∫ 2

−2
(4− x2) dx = 32/3.

Note by symmetry that x̄ = 0.

Next, moment of mass with respect to the x-axis is Mx =

∫ 2

−2

∫ 4−x2

0

y dy dx = 256/15. So ȳ =

Mx/x = 8/5.
• There are also second moments (or moments of inertia), which we will just touch on briefly. These are

found by integrating x2 or y2 weighted by the density ρ(x, y) (instead of integrating x or y). These are

– Iy =

∫∫
x2ρ(x, y) dA (second moment with respect to the y-axis)

– Ix =

∫∫
y2ρ(x, y) dA (second moment with respect to the x-axis)

– The sum Ix + Iy is called the polar moment of inertia and is denoted by I0.


