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Abstract This paper is a consequence of the close connection between combinatorial
group theory and the topology of surfaces. In the eighties Goldman discovered a Lie algebra
structure on the vector space generated by the free homotopy classes of oriented curves on
an oriented surface. The Lie bracket [a, b] is defined as the signed sum over the intersection
points of a and b of their loop product at the intersection points. If one of the classes has
a simple representative we give a combinatorial group theory description of the terms of
the Lie bracket and prove that this bracket has as many terms, counted with multiplicity,
as the minimal number of intersection points of a and b. In other words the bracket with a
simple element has no cancellation and determines minimal intersection numbers. We show
that analogous results hold for the Lie bracket (also discovered by Goldman) of unoriented
curves. We give three applications: a factorization of Thurston’s map defining the boundary
of Teichmüller space, various decompositions of the underlying vector space of conjugacy
classes into ad invariant subspaces and a connection between bijections of the set of conju-
gacy classes of curves on a surface preserving the Goldman bracket and the mapping class
group.
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1 Introduction

Let a and b denote isotopy classes of embedded closed curves on a surface �. Denote by
i(a, b) the minimal possible number of intersection points of curves representing a and b,
where the intersections are counted with multiplicity. The function i(a, b) plays a central
role in Thurston’s work on low dimensional topology (see, for instance, [12,14,29]). Let
[a, b] denote the Lie bracket on the vector space of the free homotopy classes of all essential
directed closed curves on �. This Lie bracket originated from Wolpert’s cosine formula,
Thurston’s earthquakes in Teichmüller space and Goldman’s study of Poisson brackets (see
[13]). The Lie algebra of oriented curves has been generalized using the loop product to a
string bracket on the reduced S

1-equivariant homology of the free loop space of any oriented
manifold. (see [6,7].)

The main purpose of this paper is to prove that both, the Goldman Lie bracket on oriented
curves and the Goldman Lie bracket on unoriented curves “count” the minimal number of
intersection points of two simple curves.

In order to give a more precise statement of our results, let us review the definition of
the Lie algebra for oriented curves discovered by Goldman: given two such free homotopy
classes of directed curves on an orientable surface, take two representatives intersecting each
other only in transverse double points. Each one of the intersection points will contribute a
term to the geometric formula for the bracket. Each of these terms is defined as follows: take
the conjugacy class of the curve obtained by multiplying the two curves at the intersection
point and adjoin a negative sign if the orientation given by the ordered tangents at that point
is different from the orientation of the surface. The bracket on W, the vector space of free
homotopy classes is the bilinear extension of this construction. It is remarkable that this
construction is well defined and satisfies skew-symmetry and Jacobi.

The bracket of unoriented curves can be defined on the subspace V of W fixed by the
operation of reversing direction, as the restriction of the bracket. The subspace V is generated
by elements of W of the form a + a where a is a basis element and where a denotes a with
opposite direction. Let us identify unoriented curves up to homotopy with these expressions
a+a. The Lie bracket of two unoriented curves, a+a and b+b, is then defined geometrically

by ([a, b] + [a, b]) + ([a, b] + [a, b]), which equals [a + a, b + b] using [a, b] = [a, b].
An unoriented term is a term of the form c(z + z), where c is an integer and z is a conjugacy
class, that is, an element of the basis of V multiplied by an integer coefficient.

Since this Lie bracket uses the intersection points of curves, a natural problem was to
study how well it reflects the intersection structure. In this regard, Goldman [13] proved the
following result.

Goldman’s Theorem If the bracket of two free homotopy classes of curves (oriented or
unoriented) is zero, and one of them has a simple representative, then the two classes have
disjoint representatives.

Goldman’s proof uses the Kerckhoff earthquake convexity property of Teichmüller space
[19] and in [13] he wondered whether this topological result had a topological proof. In [3]
we gave such a proof when the free homotopy class contains a non-separating simple closed
curve and the surface has non-empty boundary. Here we will give combinatorial proof of our
Main Theorem (see below), which a generalization of Goldman’s result.

Now suppose that a can be represented by a simple closed curve α. Then for any free
homotopy class b there exists a representative that can be written as a certain product
which involves a sequence of elements in the fundamental group or groups of the connected
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components of � \ α (see Sects. 2, 4 for precise definitions.) The number of terms of the
sequence for b with respect to a is denoted by t (a, b).

Main Theorem Let a and b be two free homotopy classes of directed curves on an orient-
able surface. If a contains a simple closed curve then the following nonnegative integers are
equal:

(i) The number of terms, counted with multiplicity, of the Goldman Lie bracket for oriented
curves [a, b].

(i i) The number divided by two of unoriented terms (of the form x + x), counted with
multiplicity, of the Goldman Lie bracket for unoriented curves [a + a, b + b].

(i i i) The minimal number of intersection points of a and b, i(a, b).
(iv) The number of terms of the sequence for b with respect to a, t (a, b).

We obtain the following global characterization of conjugacy classes containing simple
representatives.

Corollary of the Main Theorem Let a denote a free homotopy class of curves on a surface.
Then the following statements are equivalent.

(1) The class a has a representative that is a power of a simple curve.
(2) For every free homotopy class b the (oriented) bracket [a, b] has many as oriented terms

counted with multiplicity as the minimal intersection number of a and b.
(3) For every free homotopy class b the (unoriented) bracket [a, b] has many as unoriented

terms counted with multiplicity as twice the minimal intersection number of a and b.

In [5] a local characterization of simple closed curves in terms of the Lie bracket will
be given. Actually, the problem of characterizing algebraically embedded conjugacy classes
was the original motivation of [3,6,7].

Here is a brief outline of the arguments we follow to prove the main theorem.

(1) The key point is that when a curve is simple, we can apply either HNN extensions or
amalgamated products to write elements of the fundamental group of the surface as a
product that involves certain sequences of elements of subgroups which are the funda-
mental group of the connected components of the surface minus the simple curve.

(2) Using combinatorial group theory tools we show that if certain equations do not hold in
an HNN extension or an amalgamated free product then certain products of the sequences
in (1) cannot be conjugate, (Sects. 2 and 4.)

(3) We show that each of the terms of the bracket can be obtained by inserting the conju-
gacy class of the simple curve in different places of the sequences in (1) made circular.
(Sects. 3 and 5.)

(4) We show that the equations of (2) do not hold in the HNN extensions and amalgamated
free products determined by a simple closed curve. (Sect. 6)

The Goldman bracket extends to higher dimensional manifolds as one of the String Topol-
ogy operations. Abbaspour [1] characterizes hyperbolic three manifolds among closed three
manifolds using the loop product which is another String Topology operation. Some of his
arguments rely on the decomposition of the fundamental group of a manifold into amal-
gamated products based on torus submanifolds, and the use of this decomposition to give
expressions for certain elements of the fundamental group, which in term, gives a way of
computing the loop product.
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Here is the organization of this work: in Sect. 2 we list the known results about amal-
gamated products of groups we will use, and we prove that certain equations do not hold in
such groups. In Sect. 3, we apply the results of the previous section to find a combinatorial
description of the Goldman bracket of two oriented curves, one of them simple and separating
(see Fig. 3.) In Sect. 4 we list results concerning HNN extensions and we prove that certain
equations do not hold in such groups. In Sect. 5, we apply the results of Sect. 4 to describe
combinatorially the bracket of an oriented non-separating simple closed curve with another
oriented curve (see Fig. 5.) In Sect. 6 we prove propositions about the fundamental group of
the surface which will be used to show that our sequences satisfy the hypothesis of the Main
Theorems of Sects. 2 and 4. In Sect. 7 we put together most of the above results to show that
there is no cancellation in the Goldman bracket of two directed curves, provided that one
of them is simple. In Sect. 8 we define the bracket of unoriented curves and prove that there
is no cancellation if one of the curves is simple. In Sect. 9 we exhibit some examples that
show that the hypothesis of one of the curves being simple cannot be dropped (see Fig. 9.) In
the next three sections, we exhibit some applications of our main results. More precisely, in
Sect. 10, we show how our main theorem yields a factorization of Thurston’s map on the set
of all simple conjugacy classes of curves on a surface, through the power of the vector space
of all conjugacy classes to the set of simple conjugacy classes. In Sect. 11 we exhibit several
partitions of the vector space generated by all conjugacy classes, which are invariant under
certain Lie algebra operations. We conclude by showing in Sect. 12 that if a permutation of
the set of conjugacy classes preserves the bracket and simple closed curves, then is deter-
mined by an element of the mapping class group of the surface. We conclude by stating some
problems and open questions in Sect. 13.

2 Amalgamated products

This section deals exclusively with results concerning Combinatorial Group Theory. We start
by stating definitions and known results about amalgamating free products. Using these tools,
we prove the main results of this section, namely, Theorems 2.12 and 2.14. These two theo-
rems state that certain pairs of elements of an amalgamating free product are not conjugate.
By Theorem 3.4 if b is an arbitrary conjugacy class and a is a conjugacy class containing a
separating simple representative, then the Goldman Lie bracket [a, b] can be written as an
algebraic sum t1 + t2 +· · ·+ tn , with the following property: If there exist two terms terms ti
and t j that cancel, then the conjugacy classes associated with the terms ti and t j both satisfy
the hypothesis of Theorem 2.12 or both satisfy the hypothesis of Theorem 2.14. This will
show that the terms of the Goldman Lie bracket exhibited in Theorem 3.4 are all distinct.

Alternatively, one could make use of the theory of groups acting on graphs (see, for
instance, [10]) to prove Theorems 2.12 and 2.14.

Let C,G and H be groups and let ϕ : C −→ G and ψ : C −→ H be monomorphisms.
We denote the free product of G and H amalgamating the subgroup C (and morphisms ϕ
and ψ) by G ∗C H . This group is defined as the quotient of the free product G ∗ H by
the normal subgroup generated by ϕ(c)ψ(c)−1 for all c ∈ C . (See [16],[25], [26] or [8] for
detailed definitions.)

Since there are canonical injective maps from C,G and H to G ∗C H , in order to make
the notation lighter we will work as if C , G and H were included in G ∗C H .

Definition 2.1 Let n be a non-negative integer. A finite sequence (w1, w2, . . . , wn) of ele-
ments of G ∗C H is reduced if the following conditions hold,
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(1) Each wi is in one of the factors, G or H .
(2) For each i ∈ {1, 2, . . . , n − 1}, wi and wi+1 are not in the same factor.
(3) If n = 1, then w1 is not the identity.

The case n = 0 is included as the empty sequence. Also, if n is larger than one then for
each i ∈ {1, 2, . . . , n}, wi /∈ C , otherwise, (2) is violated.

The proof of the next theorem can be found in [8,25] or [26].

Theorem 2.2 (1) Every element of G ∗C H can be written as a product w1w2 · · ·wn where
(w1, w2, . . . , wn) is a reduced sequence. (2) If n is a positive integer and (w1, w2, . . . , wn)

is a reduced sequence then the product w1w2 · · ·wn is not the identity.

We could not find a proof of the next well known result in the literature, so we include it
here.

Theorem 2.3 If (w1, w2, . . . , wn) and (h1, h2, . . . , hn) are reduced sequences such the
products w1w2 · · ·wn and h1h2, · · · hn are equal then exists a finite sequence of elements of
C, namely (c1, c2, . . . , cn−1) such that

(i) w1 = h1c1,
(i i) wn = c−1

n−1hn,

(i i i) For each i ∈ {2, 3, . . . , n − 1}, wi = c−1
i−1hi ci .

Proof We can assume n > 1. Since the products are equal, h−1
n h−1

n−1 · · · h−1
1 w1w2 · · ·wn is

the identity. By Theorem 2.2(2), the sequence

(h−1
n , h−1

n−1, . . . , h−1
1 , w1, w2, . . . , wn)

is not reduced. Since the sequences (h−1
n , h−1

n−1, . . . , h−1
1 ) and (w1, w2, . . . , wn) are reduced,

w1 and h−1
1 belong both to G \ C or both to H \ C . Assume the first possibility holds, that

is h1 and w1 are in G \ C , (the second possibility is treated analogously.) Set c1 = h−1
1 w1.

By our assumption, c1 ∈ G. The sequence

(h−1
n , h−1

n−1, . . . , h−1
2 , c1, w2, . . . , wn)

has product equal to the identity. All the elements of this sequence are alternatively in G \ C
and H \C , with the possible exception of c1. By Theorem 2.2(2), this sequence is not reduced.
Then c1 /∈ G \ C . Since c1 ∈ G, c1 ∈ C .

Now consider the sequence

(h−1
n , h−1

n−1, . . . , h−1
3 , h−1

2 c1w2, w3, . . . , wn)

By arguments analogous to those we made before, h−1
2 c1w2 ∈ C . Denote c2 = h−1

2 c1w2.
Thus w2 = c−1

1 h2c2.
This shows that we can apply induction to find the sequence (c1, c2, . . . , cn−1) claimed

in the theorem. ��

Definition 2.4 A finite sequence of elements (w1, w2, . . . , wn) of G ∗C H is cyclically
reduced if every cyclic permutation of (w1, w2, . . . , wn) is reduced.
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Notation 2.5 When dealing with free products with amalgamation, every time we consider
a sequence of the form (w1, w2, . . . , wn) we take subindexes mod n in the following way:
For each j ∈ Z, by w j we will denote wi where i is the only integer in {1, 2, . . . , n} such
that n divides i − j .

Remark 2.6 If (w1, w2, . . . , wn) is a cyclically reduced sequence and n �= 1 then n is even.
Also, for every pair of integers i and j , wi and w j are both in G or both in H if and only if
i and j have the same parity.

The following result is a direct consequence of Theorem 2.2(1) and [26, Theorem 4.6].

Theorem 2.7 Let s be a conjugacy class of G ∗C H. Then there exists a cyclically reduced
sequence such that the product is a representative of s. Moreover every cyclically reduced
sequence with product in s has the same number of terms.

The following well-known result gives necessary conditions for two cyclically reduced
sequences to be conjugate.

Theorem 2.8 Let n ≥ 2 and let (w1, w2, . . . , wn) and (v1, v2, . . . , vn) be cyclically reduced
sequences such that the products w1w2, · · ·wn and v1v2 · · · vn are conjugate. Then there
exists an integer k ∈ {0, 1, . . . , n−1}and a sequence of elements of C, c1, c2, . . . , cn such that
for each i ∈ {1, 2, . . . , n}, wi = c−1

i+k−1vi+kci+k . In particular, for each i ∈ {1, 2, . . . , n},
wi and vi+k are both in G or both in H.

Proof By [25, Theorem 2.8], there exist k ∈ {0, 1, 2, . . . , n − 1} and an element c in the
amalgamating group C such that

w1w2 · · ·wn = c−1vk+1vk+2 · · · vk+n−1vk+nc.

The sequences (w1, w2, . . . , wn) and (c−1vk+1, vk+2, . . . , vk+n−1, vk+nc) are reduced
and have the same product. By Theorem 2.3 there exists a sequence of elements of C ,
(c1, c2, . . . , cn−1) such that

(i) w1 = c−1vk+1c1,
(ii) wn = c−1

n−1vk+nc,

(iii) For each i ∈ {2, 3, . . . , n − 1}, wi = c−1
i−1vk+i ci .

Relabeling the sequence (c, c1, c2, . . . , cn−1) we obtain the desired result. ��
Let C1 and C2 be subgroups of a group G. An equivalence relation can be defined on G

as follows: For each pair of elements x and y of G, x is related to y if there exist c1 ∈ C1

and c2 ∈ C2 such that x = c1 yc2. A double coset of G mod C1 on the left and C2 on the
right (or briefly a double coset of G) is an equivalence class of this equivalence relation. If
x ∈ G, then the equivalence class containing x is denoted by C1xC2.

Let (w1, w2, . . . , wn) be a reduced sequence of the free product with amalgamation
G ∗C H . The sequence of double cosets associated with (w1, w2, . . . , wn) is the sequence
(Cw1w2C,Cw1w2C, . . . ,Cwn−1wnC,Cwnw1C).

Using the above notation, the next corollary (which to our knowledge provides a new
invariant of conjugacy classes) follows directly from Theorem 2.8.

Corollary 2.9 Let n ≥ 2 and let (w1, w2, . . . , wn) and (v1, v2, . . . , vn) be cyclically red-
uced sequences such that the products w1w2, · · ·wn and v1v2 · · · vn are conjugate. Then the
sequence of double cosets associated with (w1, w2, . . . , wn) is a cyclic permutation of the
sequence of double cosets associated with (v1, v2, . . . , vn).
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Definition 2.10 Let C be a subgroup of a group G and let g be an element of G. Denote by
Cg the subgroup of G defined by g−1Cg. We say that C is malnormal in G if Cg ∩ C = {1}
for every g ∈ G \ C .

Lemma 2.11 Let G ∗C H be an free product with amalgamation such that the amalgamating
group C is malnormal in G and is malnormal in H. Let a and b be elements of C. Letw1, w2

and v1, v2 be two reduced sequences such that the sets of double cosets

{Cw1aw2C,Cv1v2C} and {Cw1w2C,Cv1bv2C}
are equal. Then a and b are conjugate in C. Moreover, if a �= 1 or b �= 1 then v1 and w1 are
both in G or both in H.

Proof We claim that if Cw1aw2C = Cw1w2C then a = 1. Indeed, if Cw1aw2C =
Cw1w2C then there exist c1 and c2 in C such that c1w1aw2c2 = w1w2. By Theorem 2.3
there exists d ∈ C such that

w1 = c1w1ad (2.1)

w2 = d−1w2c2 (2.2)

Since C is malnormal in H , by Eq. (2.2), d = 1. Thus Eq. (2.1) becomes w1 = c1w1a.
By malnormality, a = 1 and the proof of the claim is complete.

Assume first that Cw1aw2C = Cw1w2C and Cv1v2C = Cv1bv2C then, by the claim,
a = 1 and b = 1. Thus a and b are conjugate in C and the result holds in this case.

Now assume that Cw1aw2C = Cv1bv2C and Cv1v2C = Cw1w2C . By definition of
double cosets, there exist c1, c2, c3, c4 ∈ C such that v1bv2 = c1w1aw2c2 and v1v2 =
c3w1w2c4. By Theorem 2.3, there exist d1, d2 ∈ C such that

v1b = c1w1ad1 (2.3)

v2 = d−1
1 w2c2 (2.4)

v1 = c3w1d2 (2.5)

v2 = d−1
2 w2c4 (2.6)

By Eqs. (2.4) and (2.6) and malnormality, d1 = d2. By Eqs. (2.3) and (2.5) and malnormality,
d1 = ad1b−1. Thus a and b are conjugate in C . Finally by Eq. (2.3), since C is a subgroup
of G and a subgroup of H , w1 and v1 are both in G or both in H . ��

Now we will show that certain pairs of conjugacy classes are distinct by proving that the
associated sequences of double cosets of some of their respective representatives are distinct.
Warren Dicks suggested the idea of this proof. Our initial proof [4] applied repeatedly the
equations given by Theorem 2.8 to derive a contradiction.

Theorem 2.12 Let G ∗C H be a free product with amalgamation. Let i and j be distinct
elements of {1, 2, . . . , n} and let a and b be elements of C. Assume all the following:

(1) The subgroup C is malnormal in G and is malnormal in H.
(2) If i and j have the same parity then a and b are not conjugate in C.
(3) Either a �= 1 or b �= 1.

Then for every cyclically reduced sequence (w1, w2, . . . wn), the products

w1w2 · · ·wi awi+1 · · ·wn and w1w2 · · ·w j bw j+1 · · ·wn

are not conjugate.
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Proof Let (w1, w2, . . . , wn) be a cyclically reduced sequence. Assume that there exist a and
b in C and i, j ∈ {1, 2, . . . , n} as in the hypothesis of the theorem such that the products
w1w2 · · ·wi awi+1 · · ·wn and w1w2 · · ·w j bw j+1 · · ·wn are conjugate.

By Corollary 2.9, the sequences of double cosets mod C on the right and the left associated
with (w1, w2, . . . , awi+1, . . . , wn) and with (w1, w2, . . . , bw j+1, . . . , wn) are related by a
cyclic permutation. Removing from both sequences the terms denoted by equal expressions
yields

{Cwi awi+1C,Cw jw j+1C} = {Cw j bw j+1C,Cwiwi+1C}.
By Lemma 2.11, a and b are conjugate in C . Moreover, wi and w j are both in G or both

in H . By Remark 2.6, i and j have the same parity, which contradicts hypothesis (2). ��
Remark 2.13 It is not hard to construct an example that shows that hypothesis (1) of
Theorem 2.12 is necessary. Indeed take, for instance, G and H two infinite cyclic groups
generated by x and y respectively. Let C be an infinite cyclic subgroup generated by z.
Define ϕ : C −→ G and ψ : C −→ H by ϕ(z) = x2 and ψ(z) = y3. The sequence (x, y)
is cyclically reduced. Let a = x2 and b = x2. The products xay and xyb are conjugate.

The following example shows that hypothesis (2) of Theorem 2.12 is necessary. Let
G ∗C H be a free product with amalgamation, let c be an element of C and let (w1, w2) be
a reduced sequence. Thus (w1, w2, w1, w2) is a cyclically reduced sequence. On the other
hand, the products w1cw2w1w2 and w1w2w1cw2 are conjugate.

The next result states certain elements of an amalgamated free product are not conjugate.

Theorem 2.14 Let G ∗C H be a free product with amalgamation. Let a and b be elements
of C and let and i, j ∈ {1, 2, . . . , n}. Assume that for every g ∈ (G ∪ H) \ C, g and g−1

are not in the same double coset relative to C, i.e., g−1 /∈ CgC. Then for every cyclically
reduced sequence (w1, w2, . . . wn) the products

w1w2 · · ·wi awi+1 · · ·wn and w−1
n w−1

n−1 · · ·w−1
j+1bw−1

j · · ·w−1
1

are not conjugate.

Proof Assume that the two products are conjugate. Observe that the sequences

(w1, w2, . . . , wi a, wi+1, . . . , wn) and (w−1
n , w−1

n−1, . . . , w
−1
j+1b, w−1

j , . . . , w−1
1 )

are cyclically reduced. By Theorem 2.8 there exists an integer k such that for every h ∈
{1, 2, . . . , n}, wh and w−1

1−h+k are both in G or both in H . Then wh and w1−h+k are both in
G or both in H . By Remark 2.6, n is even and h and 1 − h + k have the same parity. Thus k
is odd.

Set l = k+1
2 . By Theorem 2.8, wl and w−1

1−l+k = w−1
l are in the same double coset of G,

(if l ∈ {i, j − k}, either wl or w1−l+k may appear multiplied by a or b in the equations of
Theorem 2.8 but this does not change the double coset.) Thus wl and w−1

l are in the same
double coset mod C of G, contradicting our hypothesis. ��

3 Oriented separating simple loops

The goal of this section is to prove Theorem 3.4, which gives a way to compute the bracket
of a separating simple closed curve x and the product of the terms of a cyclically reduced
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Fig. 1 A separating curve χ intersecting another curve

sequence given by the amalgamated free product determined by x (see Fig. 1). This theo-
rem is proved by finding in Lemma 3.2 appropriate representatives for the separating simple
closed curve x and the terms of the cyclically reduced sequence.

Through the rest of these pages, a surface will mean a connected oriented surface. We
denote such a surface by�. The fundamental group of� will be denoted by π1(�, p)where
p ∈ � is the basepoint or by π1(�)when the basepoint does not play a role in the discussion.
By a curve we will mean a closed oriented curve on�. We will use the same letter to denote
a curve and its image in �.

Letχ be a separating non-trivial simple curve on�, non-parallel to a boundary component
of�. Choose a point p ∈ χ to be the basepoint of each of the fundamental groups which will
appear in this context. Denote by �1 the union of χ and one of the connected components
of �\χ and by �2 the union of χ with the other connected component.

Remark 3.1 As a consequence of van Kampen’s theorem (see [16]) π1(�, p) is canoni-
cally isomorphic to the free product of π1(�1, p) and π1(�2, p) amalgamating the subgroup
π1(χ, p), where the monomorphismsπ1(χ, p) −→ π1(�1, p) andπ1(χ, p) −→ π1(�2, p)
are the induced by the respective inclusions.

Lemma 3.2 Let χ be a separating simple closed curve on �. Let (w1, w2, . . . , wn) be a
cyclically reduced sequence for the amalgamated product of Remark 3.1. Then there exists
a sequence of curves (γ1, γ2, . . . , γn) such that for each i ∈ {1, 2, . . . , n} then each of the
following holds.

(1) The curve γi is a representative of wi .
(2) The curve γi is alternately in �1 and �2, that is, either γi ⊂ � j where i ≡ j (mod 2)

for all i and j ∈ {1, 2}, or γi ⊂ � j where i ≡ j + 1 (mod 2) for all i and j ∈ {1, 2}.
(3) The point p is the basepoint of γi .
(4) The point p is not a self-intersection point of γi . In other words, γi passes through p

exactly once.

Moreover, the product γ1γ2 · · · γn is a representative of the product w1w2 · · ·wn and the
curve γ1γ2 · · · γn intersects χ transversally with multiplicity n.

Proof For each i ∈ {1, 2, . . . , n}, take a representative γi in of wi . Notice that γi ⊂ �1 or
γi ⊂ �2. We homotope γi if necessary, in such a way that γi passes through p only once, at
the basepoint p (Fig. 2).
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Fig. 2 The representative of Lemma 3.2

Fig. 3 An intersection point (left) and the corresponding term of the bracket (right)

Since each γi intersects χ only at p, the product γ1γ2 · · · γn intersects χ exactly n times.
Each of these intersections happens when the curve γ1γ2 · · · γn passes from�1 to�2 or from
�2 to �1. This implies that these n intersection points of χ with γ1γ2 · · · γn are transversal.

��
Let � be an oriented surface. The Goldman bracket [13] is a Lie bracket defined on the

vector space generated by all free homotopy classes of oriented curves on the surface�. We
recall the definition: For each pair of homotopy classes a and b, consider representatives,
also called a and b, that only intersect in transversal double points. The bracket of [a, b] is
defined as the signed sum over all intersection points P of a and b of free homotopy class
of the curve that goes around a starting and ending at P and then goes around b starting and
ending at P . The sign of the term at an intersection point P is the intersection number of a
and b at P . (See Fig. 3.)

The above definition can be extended to consider pairs of representatives where branches
intersect transversally but triple (and higher) points are allowed. Indeed, take a pair of such
representatives a and b. The Goldman Lie bracket is the sum over the intersection of pairs
of small arcs, of the conjugacy classes of the curve obtained by starting in an intersection
point and going along the a starting in the direction of the first arc, and then going around b
starting in the direction of the second arc. The sign is determined by the pair of tangents of
the ordered oriented arcs at the intersection point (Fig. 3).

Notation 3.3 The Goldman bracket [a, b] is computed for pairs of conjugacy classes a and
b of curves on �. In order to make the notation lighter, we will abuse notation by writing
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Fig. 4 The map ψ of Lemma 5.1

[u, v], where u, v are elements of the fundamental group of�. By [u, v], then, we will mean
the bracket of the conjugacy class of u and the conjugacy class of v.

Theorem 3.4 Let x be a conjugacy class of π1(�, p) which can be represented by a sepa-
rating simple closed curve χ . Let (w1, w2, . . . , wn) be a cyclically reduced sequence for the
amalgamated product determined by χ in Remark 3.1. Then [w1, x] = 0. Moreover, if n > 1
then there exists s ∈ {1,−1} such that the bracket is given by

s[w1w2 · · ·wn, x] =
n∑

i=1

(−1)iw1w2 · · ·wi xwi+1 · · ·wn .

Proof For each curve γ there exists a representative of the null-homotopic class disjoint from
γ so the result holds when n = 0. We prove now that [w1, x] = 0. By definition of a cycli-
cally reduced sequence, w1 ∈ π1(�1, p) or w1 ∈ π1(�2, p). Suppose that w1 ∈ π1(�1, p)
(the other possibility is analogous.) Choose a curve γ1 ⊂ �1 which is a representative ofw1.
Since γ1 ⊂ �1 , we can homotope γ1 to a curve which has no intersection with χ . Clearly
this is a free homotopy which does not fix the basepoint p. This shows that w1 and x have
disjoint representatives, and then [w1, x] = 0.

Now assume that n > 1. Let (γ1, γ2, . . . , γn) be the sequence given by Lemma 3.2 for
(w1, w2, . . . , wn).

The loop product γ1γ2 · · · γn is a representative of the group product w1w2 · · ·wn .
Every intersection of γ1γ2 · · · γn with χ occurs when γ1γ2 · · · γn leaves one connected

component of�\χ to enter the other connected component. This occurs between each γi and
γi+1. (Recall we are using Notation 2.5 so the intersection between γn and γ1 is considered.)

For each i ∈ {1, 2, . . . , n} denote by pi the intersection point ofχ and γ1γ2 · · · γn between
γi and γi+1. The loop product γ1γ2 · γiχγi+1 · · · γn is a representative of the conjugacy class
of the term of the Goldman Lie bracket corresponding to pi . Thus for each i ∈ {1, 2, . . . , n},
the conjugacy class of the term of the bracket corresponding to the intersection point pi has
w1 · · ·wi xwi+1 · · ·wn as representative.

Let i, j ∈ {1, 2, . . . , n} with different parity. Assume that wi ∈ π1(�1, p), (the case
wi ∈ π2(�1, p) is similar.) The tangent vector of γ1γ2 · · · γn at pi points towards �2 and
the tangent vector of γ1γ2 · · · γn at p j points towards �1. This shows that the signs of the
bracket terms corresponding to pi and p j are opposite, completing the proof. ��
Remark 3.5 In Theorem 3.4, all the intersections of the chosen representatives ofw1w2 · · ·wn

and x occur at the basepoint p. The representative ω of w1w2 · · ·wn intersects x in a point
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which is a multiple self-intersection point of ω. This does not present any difficulty in com-
puting the bracket, because the intersection points of both curves are still transversal double
points.

4 HNN extensions

This section is the HNN counterpart of Sect. 2 and the statements, arguments and posterior
use of the statements are similar. The main goal consists in proving that the products of cer-
tain cyclically reduced sequences cannot be conjugate (Theorems 4.16 and 4.19.) This result
will be used to show that the pairs of terms of the bracket of certain conjugacy classes with
opposite sign do not cancel.

Let G be a group, let A and B be two subgroups of G and let ϕ : A −→ B be an iso-
morphism. Then the HNN extension of G relative to A, B and ϕ with stable letter t (or,
more briefly, the HNN extension of G relative to ϕ) will be denoted by G∗ϕ and is the group
obtained by taking the quotient of the free product of G and the free group generated by
t by the normal subgroup generated by t−1atϕ(a)−1 for all a ∈ A. (See [25] for detailed
definitions.)

Definition 4.1 Consider an HNN extension G∗ϕ . Let n be a non-negative integer and for
each i ∈ {1, 2, . . . , n}, let εi ∈ {1,−1} and gi be an element of G. A finite sequence
(g0, tε1 , g1, tε2 . . . , gn−1, tεn , gn) is said to be reduced if there is no consecutive subsequence
of the form (t−1, gi , t) with gi ∈ A or (t, g j , t−1) with g j ∈ B.

The following result is the analogue of Theorem 2.2 for HNN extensions (see [25] or [8].)

Theorem 4.2 (1) (Britton’s lemma) If the sequence (g0, tε1 , g1, tε2 . . . , gn−1, tεn , gn) is
reduced and n ≥ 1 then the product g0tε1 g1tε2 · · · gn−1tεn gn is not the identity in the HNN
extension G∗ϕ . (2) Every element g of G∗ϕ can be written as a product g0tε1 g1tε2 · · · gn−1tεn gn

where the sequence (g0, tε1 , g1, tε2 . . . , gn−1, tεn , gn) is reduced.

As in the case of Theorem 2.3, we include the proof of the next known result because we
were unable to find it in the literature.

Theorem 4.3 Suppose that the equality

g0tε1 g1tε2 · · · gn−1tεn gn = h0tη1 h1tη2 · · · hn−1tηn hn

holds where (g0, tε1 , g1, tε2 . . . , gn−1, tεn , gn) and (h0, tη1 , h1, tη2 . . . , hn−1, tηn , hn) are
reduced sequences.

Then for each i ∈ {1, 2, . . . , n}, εi = ηi . Moreover, there exists a sequence of elements
(c1, c2, . . . , cn) in A ∪ B such that

(1) g0 = h0c1

(2) gn = ϕεn (c−1
n )hn

(3) For each i ∈ {1, 2, . . . , n − 1}, gi = ϕεi (c−1
i )hi ci+1

(4) For each i ∈ {1, 2, . . . , n}, ci ∈ A if εi = 1 and ci ∈ B if εi = −1.

Proof If the two products are equal then

h−1
n t−ηn · · · t−η2 h−1

1 t−η1 h−1
0 g0tε1 g1tε2 · · · gn−1tεn gn = 1. (4.1)

By Theorem 4.2(1) the sequence that yields the product on the left hand side of Eq. (4.1) is
not reduced. This implies that ε1 = η1. Moreover, if ε1 = 1 then h−1

0 g0 ∈ A and if ε1 = −1
then h−1

0 g0 ∈ B.
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Denote the product h−1
0 g0 by c1. Thus g0 = h0c1. By definition of HNN extension, we

can replace t−ε1 c1tε1 by ϕε1(c1) in Eq. (4.1) to obtain,

h−1
n t−ηn · · · t−η2 h−1

1 ϕε1(c1)g1tε2 · · · gn−1tεn gn = 1 (4.2)

By Theorem 4.2, the sequence yielding the product of the left hand side of Eq. (4.2) is
not reduced. Hence ε2 = η2 and if ε2 = 1 then h−1

1 ϕε1(c1)g1 ∈ A and if ε2 = −1 then
h−1

1 ϕε1(c1)g1 ∈ B.
Denote by c2 the product h−1

1 ϕε1(c1)g1. Thus g1 = ϕε1(c−1
1 )h1c2.

By applying these arguments, we can complete the proof by induction. ��
Definition 4.4 Let n be a non-negative integer. A sequence of elements of G∗ϕ , (g0, tε1 ,

g1, tε2 , . . . , gn−1, tεn ) is said to be cyclically reduced if all its cyclic permutations of are
reduced.

We could not find a direct proof in the literature of the first statement of our next so
we include it here. (The second statement also follows from Theorem 4.7 but it is a direct
consequence of our proof.)

Theorem 4.5 Let s be a conjugacy class of G∗ϕ . Then there exists a cyclically reduced
sequence such that the product of its terms is a representative of s. Moreover, every cyclically
reduced sequence with product in s has the same number of terms.

Proof If s has a representative in G, the result follows directly. So we can assume that s has
no representatives in G.

By Theorem 4.2(2), the set of reduced sequences with product in s is not empty. Thus
it is possible to choose, among all such sequences, one that makes the number of terms the
smallest possible. Let (g0, tε1 , g1, tε2 , . . . , gm−1, tεm ) be such a sequence. We claim that
(g0, tε1 , g1, tε2 , . . . , gm−1, tεm ) is cyclically reduced.

Indeed, if m ∈ {0, 1}, the sequence has the form (g0) or (g0, tε1) and so it is cyclically
reduced. Assume now that m > 1.

If (g0, tε1 , g1, tε2 , . . . , gm−1, tεm ) is not cyclically reduced then one of the following
statements holds:

(1) ε1 = 1, εm = −1 and g0 ∈ A.
(2) ε1 = −1, εm = 1 and g0 ∈ B.

We prove the result in case (1). (Case (2) can be treated with similar ideas.) In this case,
t−εm g0tε1 = ϕ(g0) ∈ B.

The sequence (gm−1ϕ(g0)g1, tε2 , . . . , gm−2, tεm−1) is reduced, has product in s and has
strictly fewer terms than the sequence (g0, tε1 , g1, tε2 , . . . , gm−1, tεm ). This contradicts our
assumption that our original sequence has the smallest number of terms. Thus our proof is
complete. ��
Notation 4.6 By definition, the cyclically reduced sequences of a given HNN extension
have the form (g0, tε1 , g1, tε2 , . . . , gn−1, tεn ). From now on, we will make use of the fol-
lowing convention: For every integer h, gh will denote gi where i is the unique integer in
{0, 1, 2, . . . , n − 1} such that n divides i − h. Analogously, εh will denote εi where i is the
unique integer in {1, 2, . . . , n} such that n divides i − h.

The next result is due to Collins and gives necessary conditions for two cyclically reduced
sequence have conjugate product (see [25].)
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Theorem 4.7 (Collins′Lemma) Let n ≥ 1 and let (g0, tε1 , g1, tε2 , . . . , gn−1, tεn ) and
(h0, tη1 , h1, tη2 , . . . , hm−1, tηm ) be two cyclically reduced sequences such that their prod-
ucts are conjugate. Then n = m and there exist c ∈ A ∪ B and k ∈ {0, 1, 2, . . . , n − 1} such
that the following holds:

(1) ηk = εn,
(2) c ∈ A if εn = −1 and c ∈ B if εn = 1,
(3) g0tε1 g1tε2 · · · gn−1tεn = c−1hktηk+1 hk+1tηk+2 · · · hk+n−1tηk c.

By Theorems 4.3 and 4.7 and arguments like those of Theorem 2.8, we obtain the following
result.

Theorem 4.8 Let n be a positive integer and let (g0, tε1 , g1, tε2 , . . . , gn−1, tεn ) and (h0, tη1 ,

h1, tη2 , . . . , hn−1, tηn ) be cyclically reduced sequences such that the products

g0tε1 g1tε2 · · · gn−1tεn and h0tη1 h1tη2 · · · hn−1tηn

are conjugate. Then there exists an integer k such that for each i ∈ {1, 2, . . . , n}, εi = ηi+k .
Moreover, there exists a sequence of elements (c1, c2, . . . , cn) in A ∪ B such that for each
i ∈ {1, 2, . . . , n}, ci ∈ A if εi = 1 and ci ∈ B if εi = −1 and

gi = ϕηi+k(c−1
i+k)hi+kci+k+1

Notation 4.9 Let G∗ϕ be an HNN extension, where ϕ : A −→ B. We denote the subgroup
A by C1 and the subgroup B by C−1.

A direct consequence of Theorem 4.8 follows.

Corollary 4.10 Let (g0, tε1 , g1, tε2 . . . , gn−1, tεn ) and (h0, tη1 , h1, tη2 , . . . , hn−1, tηn ) be
cyclically reduced sequences such that the products

g0tε1 g1tε2 · · · gn−1tεn and h0tη1 h1tη2 · · · hn−1tηn

are conjugate. If n ≥ 1 then there exists an integer k such that for each i ∈ {1, 2, . . . , n},
εi = ηi+k and gi belongs to the double coset C−εi hi+kCεi+1 .

Remark 4.11 If ε ∈ {1,−1} and a ∈ Cε then atε = tεϕε(a) in G∗ϕ .

Definition 4.12 Let n ≥ 2 and let (g0, tε1, g1, tε2 , . . . , gn−1, tεn ) be a cyclically reduced
sequence. The sequence of double cosets associated with (g0, tε1 , g1, tε2 , . . . , gn−1, tεn ) is
the sequence of double cosets

(Cεi t
εi gi t

εi+1 gi+1tεi+2 C−εi+2)0≤i≤n−1.

Lemma 4.13 Let (g0, tε1 , g1, tε2 . . . , gn−1, tεn ) and (h0, tη1 , h1, tη2 , , . . . hn−1, tηn ) be two
cyclically reduced sequences whose products are conjugate and such that n ≥ 2. Then the
sequence of double cosets associated with (g0, tε1 , g1, tε2 . . . , gn−1, tεn ) is a cyclic permu-
tation of the sequence of double cosets associated with (h0, tη1 , h1tη2 , . . . hn−1, tηn ).

Proof Let k ∈ {1, 2, . . . , n} and (c1, c2, . . . , cn) be a finite sequence of elements in A ∪
B given by Theorem 4.8 for the sequences (g0, tε1 , g1, tε2 . . . , gn−1, tεn ) and (h0, tη1 , h1,

tη2 , . . . hn−1, tηn ). By cyclically rotating (h0, tη1 , h1, tη2 , . . . hn−1, tηn ) if necessary, we can
assume that k = 0.
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Let i ∈ {1, 2, . . . , n}. We will complete this proof by showing that the i-th double coset
of the sequence (g0, tε1 , g1, tε2 . . . , gn−1, tεn ) equals the i-th double coset of the sequence
of (h0, tη1 , h1, tη2 , . . . hn−1, tηn ).

By Theorem 4.8, ε j = η j for each j ∈ {1, 2, . . . , n} and

gi t
εi+1 gi+1 = ϕηi (c−1

i )hi ci+1tηi+1ϕηi+1(c−1
i+1)hi+1ci+2

By Remark 4.11, ci+1tηi+1ϕηi+1(c−1
i+1) = tηi+1 . Thus

gi t
εi+1 gi+1 = ϕηi (c−1

i )hi t
ηi+1 hi+1ci+2

By Theorem 4.8, ci ∈ Cεi and ci+2 ∈ Cεi+2 . Therefore ϕηi (c−1
i )∈ C−εi . Thus by Remark 4.11

tεi gi t
εi+1 gi+1tεi+2 ∈ tεi C−εi hi t

ηi+1 hi+1Cεi+2 tεi+2

Consequently, by Remark 4.11, tεi gi tεi+1 gi+1tεi+2 is in the i-th double coset associated
with (h0, tη1 , h1, tη2 , . . . hn−1, tηn ) and our proof is complete. ��

Definition 4.14 Let G∗ϕ be an HNN extension, where ϕ : A −→ B. We say that G∗ϕ is
separated if A ∩ Bg = {1} for all g ∈ G.

Lemma 4.15 Let (tε1 , g1, tε2 , g2, tε3) and (tη1 , h1, tη2 , h2, tη3) be two reduced sequences.
Let a ∈ Cε2 and let b ∈ Cη2 . Suppose that G∗ϕ is separated and that A and B are malnormal
in G∗ϕ . Then the following statements hold.

(1) If the double cosets Cε1 tε1 g1atε2 g2tε3 C−ε3 and Cε1 tε1 g1tε2 g2tε3 C−ε3 are equal, then
a = 1.

(2) If the following sets of double cosets {Cε1 tε1 g1atε2 g2tε3 C−ε3 ,Cη1 tη1 h1tη2 h2tη3 Cε3} and
{Cε1 tε1 g1tε2 g2tε3 C−ε3 ,Cη1 tη1 h1btη2 h2tη3 Cε3} are equal then a and b are conjugate by
an element of A ∪ B. Moreover, if a �= 1 or b �= 1, then ε2 = η2.

Proof We first prove (1). By Remark 4.11,

tε1 C−ε1 g1atε2 g2Cε3 tε3 = tε1 C−ε1 g1tε2 g2Cε3 tε3 .

Cross out tε1 and tε3 at both sides of the above equation. Then there exist d1 ∈ Cε1 and
d2 ∈ Cε3 such that g0tε2 g1 = d1g0atε2 g1d2. By Theorem 4.3, there exists c ∈ Cε2 such that

g0 = d1g0ac (4.3)

g1 = ϕε2(c−1)g1d2. (4.4)

By malnormality, separability, and Eq. (4.4),ϕε2(c−1) = 1 and so c = 1. By malnormality,
separability and Eq. (4.3), ac = 1. Hence a = 1.

Now we prove (2). By statement (1), the first (resp. second) element listed in the first set
is equal to the second (resp. first) element listed on the second set. By Theorem 4.3, for each
i ∈ {1, 2, 3}, εi = ηi . By arguing as in the proof of statement (1), we can deduce that there
exist c1 and d1 in C−ε1 and c3 and d3 in Cε3 , such that

g1atε2 g2 = c1h1btε2 h2c3 and g1tε2 g2 = d1h1tε2 h2d3
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By Theorem 4.3, there exists a pair of elements, x and y in Cε2 such that

g0a = c1h0bx (4.5)

g1 = ϕε2(x−1)h1c3. (4.6)

g0 = d1h0 y (4.7)

g1 = ϕε2(y−1)h1d3. (4.8)

Since ϕ is an isomorphism, by malnormality and separability and Eqs. (4.6) and (4.8), x = y.
Analogously, by malnormality and separability and Eqs. (4.5) and (4.7), bxa−1 = y. There-
fore a and b are conjugate by x . Since x ∈ A ∪ B, the proof is complete. ��

The next theorem gives necessary conditions for certain products of cyclically reduced
sequences to not be conjugate.

Theorem 4.16 Let G∗ϕ be an HNN extension. Let (g0, tε1 , g1, tε2 . . . , gn−1, tεn ) be a cycli-
cally reduced sequence. and let i and j be elements of {1, 2, . . . , n}. Let a be an element of
Cεi and let b be an element of Cε j . Moreover, assume that the following conditions hold:

(1) The subgroups A and B are malnormal in G.
(2) The HNN extension G∗ϕ is separated.
(3) If εi = ε j then a and b are not conjugate by an element of A ∪ B.
(4) Either a �= 1 or b �= 1.

Then the products

g0tε1 g1tε2 · · · gi−1atεi gi · · · gn−1tεn and g0tε1 g1tε2 · · · g j−1btε j g j · · · gn−1tεn

are not conjugate.

Proof Assume that the products are conjugate. Without loss of generality, we can also assume
that a is not the identity.

If n = 1 the proof of the result is direct. Hence we can assume n ≥ 2. The sequences

(g0, tε1 , g1, tε2 . . ., gi a, tεi+1 , . . . gn−1, tεn ) and (g0, tε1 , g1, tε2 . . . , g j b, tε j+1 , . . . gn−1, tεn )

are cyclically reduced. By Lemma 4.13 both sequences are associated with the same cyclic
sequence of double cosets. If i = j the result is a consequence of Lemma 4.15(1). Hence
i �= j . By Remark 4.11,

Cεi−2 tεi−2 gi−2tεi−1 gi−1atεi C−εi = Cεi−2 tεi−2 gi−2tεi−1 gi−1tεi C−εi

and

Cε j−2 tε j−2 g j−2tε j−1 g j−1btε j C−ε j = Cε j−2 tε j−2 g j−2tε j−1 g j−1tε j C−ε j .

As in the proof of Theorem 2.12, crossing out the elements in the sequences of double
cosets with equal expressions shows that the sets below

{Cεi−1 tεi−1 gi−1atεi gi t
εi+1 C−εi+1 ,Cε j−1 tε j−1 g j−1tε j g j t

ε j+1 C−ε j+1}

{Cεi−1 tεi−1 gi−1tεi gi t
εi+1 C−εi+1 ,Cε j−1 tε j−1 g j−1btε j g j t

ε j+1 C−ε j+1}
are equal. By Lemma 4.15, εi = ε j and a and b are conjugate by an element of A ∪ B. This
contradicts our hypothesis and so the proof is complete. ��
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Remark 4.17 The following example shows that hypotheses (1) or (2) of Theorem 4.16 are
necessary. Let G be the direct sum Z ⊕ Z of Z and Z. Let A = Z ⊕ {0} and let B = {0} ⊕ Z

considered as subgroups of Z ⊕ Z. Define ϕ : A −→ B by ϕ(x, 0) = (0, x). Let a be an
element of A. Since Z ⊕ Z is commutative,

(0, 1)t−1(1, 1)t−1(1, 1)t (0,−1) = t−1(2, 1)t−1(0, 1)t

Thus the sequences t−1, (1, 1), t−1, (0, 1)(1, 0), t and t−1, (1, 1)(1, 0), t−1, (0, 1), t have
conjugate products. On the other hand, hypotheses (3) and (4) of Theorem 4.16 hold for these
sequences.

The following example shows that hypothesis (3) of Theorem 4.16 is necessary. Let G∗
be an HNN extension relative to an isomorphism ϕ : A −→ B. Let g ∈ G \ A and let a ∈ A.
The sequence (g, t, g, t) is cyclically reduced and the product of the sequences (ga, t, g, t)
and (g, t, ga, t) are conjugate.

The next auxiliary lemma will be used in the proof of Theorem 4.19. The set of congruence
classes modulo n is denoted by Z/nZ.

Lemma 4.18 Let n and k be integers. Let F̂ : Z/nZ −→ Z/nZ be induced by the map on
the integers given by the formula F(x) = −x + k. If n is odd or k is even then F̂ has a fixed
point.

Proof If k is even then k
2 is integer and a fixed point of F . Thus F̂ has a fixed point.

On the other hand, the map F̂ has a fixed point whenever the equation 2x ≡ −k (mod n)
has a solution. If n is odd this equation has a solution because 2 has an inverse in Z/nZ. This
completes the proof. ��

We will use Notation 4.9 for the statement and proof of the next result.

Theorem 4.19 Let G∗ϕ be an HNN extension; let (g0tε1 g1tε2 . . . gn−1tεn ) be a cyclically
reduced sequence. Let i and j be elements of {1, 2, . . . , n}. Let a be an element of Cεi and
let b an element of C−ε j . Assume that for each g ∈ G, g−1 does not belong to the set
(A ∪ B)g(A ∪ B). Then the products

g0tε1 g1tε2 · · · gi−1atεi gi · · · gn−1tεn and

g−1
n−1t−εn−1 g−1

n−2t−εn−2 · · · g−1
j bt−ε j · · · t−ε1 g−1

0 t−εn

are not conjugate.

Proof Here is a sketch of the proof: If the above products are conjugate then the sequence
of (ε1, ε2, . . . , εn) is a rotation of the sequence (−εn,−εn−1, . . . ,−ε1). Since the terms of
those sequences are not zero, a term ε j of the first sequence cannot correspond to a term of
the form −εh . This gives conditions of the rotation and n. The same rotation also establishes
a correspondence between double cosets of gh’s and double cosets of rotated g−1

h ’s. Using
the fact that the sequences εh’s and gh’s are “off” by one, we will show that there exists u
such that g−1

u ∈ (A ∪ B)gu(A ∪ B).
Now the detailed proof. Consider the sequence (s0, tη1 , s1, tη2 . . . , sn−1, tηn ) defined by

ηh = −εn−h and

sh =
{

g−1
−h−1b if −h − 1 ≡ j (mod n),

g−1
−h−1 otherwise.

(4.9)
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for each h. (Recall Notation 4.6.)
Assume that the products of the hypothesis of the theorem are conjugate. Thus the

sequences

(g0, tε1 , g1, tε2 . . . , gi−1a, tεi , gi , . . . gn−1, tεn ) and (s0, tη1 , s1, tη2 . . . sn−1, tηn )

are cyclically reduced and have conjugate products. Let k be as in Corollary 4.10 for these
two products. Hence

εh = ηh+k = −εn−h−k, (4.10)

and the following holds:

(1) if h �≡ i − 1 (mod n) then gh belongs to the double coset C−εh sh+kCεh+1 ,
(2) gi−1a belongs to the double coset C−εi−1 si+kCεi .

By hypothesis, a ∈ Cεi . Thus for all h we have

gh ∈ C−εh sh+kCεh+1 (4.11)

Since for every integer h, εh �= 0, εh �= −εh . Therefore by Eq. (4.10), the map F̂ defined
on the integers mod n induced by F(h) = −h − k cannot have fixed points. By Lemma 4.18,
n is even and k is odd.

Then (−k − 1) is even. By Lemma 4.18, the map G(h) = −h + (−k − 1) has a fixed
point. Denote this fixed point by u. Thus

u + k ≡ −u − 1 (mod n) (4.12)

Assume that u �≡ j (mod n). By Eqs. (4.12) and (4.9), su+k = s−u−1 = g−1
u . By Eq. (4.11),

gu ∈ C−εu g−1
u Cεu+1 ⊂ (A ∪ B)g j (A ∪ B),

contradicting our hypothesis. Therefore u ≡ j (mod n). In this case, by Eq. (4.11), g j ∈
C−ε j g−1

j bCε j+1 .
By Eqs. (4.12) and (4.10), ε j+1 = −ε− j−1−k = −ε j . Since b ∈ C−ε j then b ∈ Cε j+1 .

Consequently, g j ∈ C−ε j g−1
j Cε j+1 . Since C−ε j g−1

j Cε j+1 ⊂ (A ∪ B)g j (A ∪ B), this is a
contradiction. ��

5 Oriented non-separating simple loops

This section is the “non-separating version” of Sect. 3. The main purpose here is the proof of
Theorem 5.3, which describes the terms of the bracket of a simple non-separating conjugacy
class and an arbitrary conjugacy class (see Fig. 5).

We will start by proving some elementary auxiliary results.

Lemma 5.1 Let λ be a non-separating simple curve on � and p a point in λ. There exists a
map ψ : S

1 × [0, 1] −→ �, such that:

(1) There exists a point q ∈ S
1, ψ(q, 0) = ψ(q, 1) = p.

(2) ψ is injective on (S1 × [0, 1]) \ {(q, 0), (q, 1)}
(3) ψ |S1×{0} = λ.
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Fig. 5 The intersection of a non-separating curve λ and another curve

Proof (see Fig. 4) Choose a simple trivial curve τ such that τ ∩λ = {p} and the intersection
of τ and λ is transversal. (The existence of such a curve is guaranteed by the following argu-
ment of Poincaré: Take a small arc β crossing λ transversally. Since� \ (β ∪λ) is connected
there exists an arc in � \ (β ∪ λ), with no self-intersections, joining the endpoints of β.)

Consider an injective map η : S
1 × [0, 1] −→ � such that λ = η(S1 × {0}). Let q ∈ S

1

be such that η(q, 0) = p. Denote by C the image of the cylinder η(S1 × [0, 1]). Denote by
ξ the boundary component of C defined by η(S1 × {1}). Modify η if necessary so that τ
intersects ξ in a unique double point s. (See Fig. 6).

Choose two points on s1 and s2 on ξ close to s and at both sides of s. Choose a embedded
arc in the interior of C , intersecting τ exactly once, from s1 to s2 and denote it by κ . Denote
by D the closed half disk bounded by κ and the subarc of ξ containing s.

Choose two embedded arcs α1 and α2 on � from p to s1 and from p to s2, intersecting
only at p, and such that α1 ∩ τ = α2 ∩ τ = {p}, α1 ∩ C={p, s1} and α2 ∩ C={p, s2}.

Consider the triangle T , with sides α1, the arc in τ from s1 to s2 and α2.
Denote by η1 the restriction of η to η−1(D), η1 : η−1(D) −→ D. Now take a homeomor-

phism η2 : D −→ D ∪ T such that η2|κ is the identity and η2(s) = p.
For each x ∈ S

1 × [0, 1], define ψ : S
1 × [0, 1] −→ � as η(x) if x /∈ D and as η2η(x)

otherwise. This map satisfies the required properties. ��
Let ψ be the map of Lemma 5.1. Denote by λ1 the curve ψ(S1 × {1}). The homeo-

morphism ϑ : λ = ψ(S1 × {0}) −→ λ1 = ψ(S1 × {1}) defined by ϑ(ψ(s, 0)) = ψ(s, 1)
induces an isomorphismϕ : π1(λ, p) −→ π1(λ1, p). Denote by�1 the subspace of� defined
by � \ ψ(S1 × (0, 1)), and by τ the simple closed curve induced by the restriction of ψ to
{q} × [0, 1].
Lemma 5.2 With the above notation, the fundamental group π1(�, p) of� is isomorphic to
the HNN extension of π1(�1, p) relative to ϕ. Moreover, τ is a representative of the element
denoted by the stable letter t and if (g0, tε1 , g1, tε2 , . . . gn−1, tεn ) is a cyclically reduced
sequence of the HNN extension then there exists a sequence of curves (γ0, γ1, . . . , γn−1)

such that for each i ∈ {0, 1, . . . , n − 1},
(1) The basepoint if γi is p.
(2) The curve γi is a representative of gi .
(3) The inclusion γi ⊂ �1 holds.
(4) The basepoint p is not a self-intersection point of γi . In other words, γi passes through

p exactly once.
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Fig. 6 The proof of Lemma 5.1

Proof By van Kampen’s Theorem (see, for instance [16]), since �1 ∩ τ = {p} we have that
π1(�1 ∪ τ, p) is the free product of π1(�1, p) and the infinite cyclic group π1(τ, p).

Denote by D the disk ψ((S1 \ q) × (0, 1)). Glue the boundary of D to the boundary of
�1 ∪ τ as follows: attach λ, τ , λ1 to S

1 × {0}, q × [0, 1], and S
1 × {1} respectively. (The

reader can easily deduce the orientations.)
The relation added by attaching the disk D shows that the π1(�, p) is isomorphic to the

HNN extension of π1(�1, p) relative to ϕ. Notice also that τ is a representative of t .
For each i ∈ {0, 1, . . . , n − 1}, let γi be a loop in �1, based at p and representing gi . By

modifying these curves by a homotopy relative to p if necessary, we can assume that each
of them intersects p exactly once, as desired. Then (4) holds and the proof is complete. ��

Recall that there is a canonical isomorphism between free homotopy classes of curves
on a surface � and conjugacy classes of elements of π1(�). From now on, we will identify
these two sets.

The following theorem gives a combinatorial description of the bracket of two oriented
curves, one of them simple and non-separating (see Fig. 5).

Theorem 5.3 Let λ be a separating simple closed curve. Let (g0, tε1 , g1, tε2 . . . , gn−1, tεn )

be a cyclically reduced sequence for the HNN extension of Lemma 5.2 determined by λ. Let
y be the element of π1(�, p) associated with λ. Then the following holds.

(1) There exists a representative η of the conjugacy class of the product g0tε1 g1tε2 · · · gn−1

such that η and λ intersect transversally at p with multiplicity n.
(2) There exists s ∈ {1,−1} such the bracket is given by

s[g0tε1 g1tε2 · · · gn−1tεn , y] =
∑

i :εi =1

g0tε1 g1tε2 · · · gi−1 ytεi gi · · · gn−1tεn

−
∑

i :εi =−1

g0tε1 g1tε2 · · · gi−1ϕ(y)t
εi gi · · · gn−1tεn

Proof Let (γ0, γ1, . . . , γn−1) denote a sequence of curves obtained in Lemma 5.2 for the
sequence (g0, tε1 , g1,tε2 . . . , gn−1,tεn ).

Let D ⊂ � be a small disk around p. Observe that D ∩ ψ(S1 × [0, 1]) consists in two
“’triangles” T1 and T2, intersecting at p (see Fig. 7). Two of the sides of one of these triangles
are subarcs of λ. Denote this triangle by T1. Suppose that the beginning of τ is inside T1 (the
proof for the other possibility is analogous.)
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For each i ∈ {1, 2, . . . , n}, if εi = 1, τi will denote a copy of the curve τ and if εi = −1,
τi will denote a copy of the curve τ with opposite direction. Denote by γ the curve
γ1τ1γ2τ2 · · · γnτn . Clearly γ is a representative of g0tε1 g1tε2 · · · gn−1tεn .

The intersection of γ and λ consists in 2n points, located at the beginning and end of τi

for each i ∈ {1, 2, . . . , n}.
It is not hard to see that for each i ∈ {1, 2, . . . , n} if εi = 1, the intersection point of γ

and λ located at the end of τi can be removed by a small homotopy. Similarly, if εi = −1
then the intersection point at the beginning of τi can be removed by a small homotopy. (See
for example Fig. 7, where the two arcs at the of τ and beginning of γ1 are replaced by the
arc ρi .)

Denote by η the curve obtained after homotoping γ to remove the n removable points.
Note that η intersects λ at p with multiplicity n. More specifically, for each i ∈ {1, 2, . . . , n},
if εi = 1 then there is an intersection at the beginning of τi , and if εi = −1 there in an inter-
section at the end of τi . Since η crosses λ these intersections can be taken to be transversal.
Thus (1) is proved.

Now we will compute the bracket [g0tε1 g1tε2 · · · gn−1tεn , y] using η and λ as represen-
tatives. Since η and λ have n intersection points, there are n terms.

Let i ∈ {1, 2, . . . , n}. Assume first that εi = 1. The term of the bracket corresponding to
this intersection point is obtained by inserting λ between γi−1 and τi . Since the transforma-
tions we applied to γ to obtain η can be now reversed, then the free homotopy class of this
term is

g0tε1 g1 · · · gi−1 ytεi gi · · · gn−1tεn .

Assume now that εi = −1. The term of the bracket corresponding to this intersection
point is obtained by inserting λ right after τi . This yields the element

g0tε1 g1 · · · gi−1tεi ygi · · · gn−1tεn .

By using the relation t−1 y = ϕ(y)t−1 this element can be written as

g0tε1 g1 · · · gi−1ϕ(y)t
εi gi · · · gn−1tεn .

To conclude, observe that pairs of terms corresponding to εi = 1 and εi = −1 have oppo-
site signs because the tangents of η at the corresponding points point in opposite directions,
and the tangent of λ is the same for both terms. (see Fig. 8) ��

6 Some results on surface groups

This section contains auxiliary results showing that certain equations do not hold in the fun-
damental group of the surface. These results will be used in Sects. 7 and 8 to prove that certain
sequences satisfy the hypothesis of Theorems 2.12, 2.14, 4.16 and 4.19.

We start with a well known result included for completeness.

Lemma 6.1 If g is a non-trivial element of a free group G, then g and g−1 are not conjugate.

Proof Suppose that g and g−1 are conjugate. Then there exists an element x of G, conjugate
to g which can be represented by a cyclically reduced word x1x2 . . . xn in the free genera-
tors of G. Since x and x−1 are conjugate, there exist an integer k such that x1x2 . . . xn =
xk−1xk−2 . . . xk−n . Thus for each i ∈ {1, 2, . . . , n}, xi = xk−i .
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Fig. 7 Proof of Theorem 5.3

Fig. 8 Proof of Theorem 5.3

If k is even, x k
2

= x k
2
, a contradiction. Therefore k is odd. Thus x k−1

2
x k+1

2
= x k

2
x k−1

2
which implies the word x is not reduced. Hence the proof is complete. ��

Proposition 6.2 Let � be an orientable surface with non-empty boundary. Let a be an ele-
ment of π1(�) which can be represented by a simple closed curve parallel to a boundary
component of �. Then the cyclic group generated by a is malnormal in π1(�).

Proof Suppose that the cyclic group generated by a is not malnormal. Then there exist inte-
gers m and n and g ∈ π1(�) \ {ak, k ∈ Z} such that the equation am gang−1 = 1 holds.
Hence a−m and an are conjugate. Write a as xvx−1 where x and v are words in the free
generators ofπ1(�) and v is cyclically reduced. The words vn and v−m are cyclically reduced
and conjugate. Since π1(�) is a free group, if two cyclically reduced words are conjugate
then one is a cyclic permutation of the other. In particular, two cyclically reduced conjugate
words have the same length. Thus n = m or m = −n. By Lemma 6.1, m = −n.

Therefore am and g, are two elements of a free group which commute. Hence am and g
are powers of the same element c ∈ F (see [25, page 10] for a proof of this statement.) Let
k be an integer such that a = ck . By hypothesis, a is not a proper power; thus k ∈ {1,−1}.
Consequently, either c = a or c = a−1. This implies that g is a power of a. ��
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Proposition 6.3 L Let �1 and ϕ be as in Lemma 5.2. If �1 is not a cylinder then the HNN
extension of Lemma 5.2 is separated. (See Definition 4.14).

Proof Let λ and λ1 be as in the paragraph before Lemma 5.2. Let a and b denote elements on
the fundamental group of �1 such that λ and λ1 are representatives of a and b respectively.

Assume that the HNN extension is not separated. Then there exist non-zero integers m
and n and g ∈ π1(�1) such that the equation am gbng−1 = 1 holds. Denote by �̃1 the surface
obtained by collapsing the boundary component of �1 associated with a. Denote by b̃ the
element of π1(�̃1) induced by b. Observe that b̃n = 1. Since n �= 0, by [25, Proposition
2.16], b̃ = 1. Then �̃1 is a disk. Therefore �1 is a cylinder, a contradiction. ��
Proposition 6.4 Let � be an orientable surface with non-empty boundary which is not the
cylinder. Let p be a point in �. Let a, b and g be elements of π1(�). Assume that a and
b can be represented by simple closed curves freely homotopic to boundary components of
�. Moreover assume that either a and b are either equal or not conjugate. If g is neither a
power of a nor of b then for every pair of integers n and m, gam gbn �= 1.

Proof Assume that gam gbn = 1. Notice that m �= 0 and n �= 0. Let u = gam . Since
gam gbn = gam gama−mbn = u2a−mbn,

u2 = b−nam. (6.1)

Suppose that � has three or more boundary components or � has two boundary compo-
nents and a = b. Then there exists a free basis of the fundamental group of � containing a
and b. (In the two considered cases, a = b is possible) Eq. (6.1) does not hold.

Suppose that � has two boundary components and a �= b. Denote by h the genus of �.
Since� is not the cylinder, h > 1. Then there exists a presentation of the fundamental group
of � such that the free generators are a, a1, a2, . . . , ah, b1, b2, . . . , bh and

b = aa1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 · · · ahbha−1
h b−1

h (6.2)

Combining Eqs. (6.1) and (6.2) we obtain

u2 = (aa1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 · · · ahbha−1
h b−1

h )−nam .

Observe that all the elements of the right hand side of the above equation are in the free
generating set of the group. We can check that both assumptions n > 0 and n < 0 lead to a
contradiction. Since n �= 0 the result is proved in this case.

Finally, suppose that � has one boundary component and a = b. Then there exists a
presentation of the fundamental group of� with free generators a1, b1, . . . , ah, bh such that

a = a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 · · · ahbha−1
h b−1

h (6.3)

If m − n is even then u = a
m−n

2 which implies that g is a power of a. Hence m − n is odd.
In this case, it is easy to check that the equation u2 = am−n does not hold. ��

7 Goldman Lie algebras of oriented curves

In this section we combine some of our previous results to prove Theorem 7.7.

Definition 7.1 Let x and y be conjugacy classes of π1(�) such that x can be represented by
a simple loop. We associate a non-negative integer t (x, y) to x and y, called the number of
terms of y with respect to x in the following way:
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Firstly, assume that x has a separating representative. Let (w1, w2, . . . , wn) be cycli-
cally reduced sequence for the amalgamated product of Remark 3.1 such that the prod-
uct w1w2 · · ·wn is conjugate to y. (The existence of such a sequence is guaranteed by
Theorem 2.7.) We define t (x, y) = 0 if n ≤ 1 and t (x, y) = n otherwise. (By Theorem 2.7,
t (x, y) is well defined if x has a separating representative.)

Secondly, assume that x can be represented as a non-separating simple closed curve. Let
(g0, tε1 , g1 . . . , gn−1, tεn ) be a cyclically reduced sequence for the HNN extension defined
in Lemma 5.2 such that the product of this sequence is conjugate to y. (The existence of such
a sequence is guaranteed by Theorem 4.5.) We set t (x, y) = n. (By Theorem 4.5, t (x, y) is
well defined in this case.)

Let α and β be two curves that intersect transversally. The geometric intersection number
of α and β is the number of times that α crosses β. More precisely, the geometric intersection
number of α and β is the number of pair of points (u, v), where u is in the domain of α, v is
in the domain of β, u and v have the same image in� and the branch through u is transversal
to the branch through v in the surface. Thus the geometric intersection number of α and β is
the number of intersection points of α and β counted with multiplicity.

Let a and b denote two free homotopy classes of curves. The minimal intersection number
of a and b, denoted by i(a, b), is the minimal possible geometric intersection number of pairs
of curves representing a and b.

Lemma 7.2 Let x and y be conjugacy classes of π1(�). Assume that x can be represented
as a simple closed curve. Then, i(x, y) ≤ t (x, y).

Proof If x can be represented by a separating (resp. non-separating) curve, by Lemma 3.2
(resp. Theorem 5.3) there exist representatives of x and y with exactly t (x, y) intersection
points. ��
Remark 7.3 If x and y are conjugacy classes of π1(�) and x can be represented as a simple
closed curve x , it can be proved directly that i(x, y) = t (x, y). Since this equality follows
from Theorem 7.7, we do not give a proof of this statement here.

Definition 7.4 Let u and v be conjugacy classes of π1(�). The number of terms of the Gold-
man Lie bracket [u, v] denoted by g(u, v) is the sum of the absolute values of the coefficients
of the expression of [u, v] in the basis of the vector space given by the set of conjugacy
classes.

Remark 7.5 Let u and v be conjugacy classes of π1(�). Since one can compute the Lie
bracket by taking representatives of u and v with minimal intersection, and the bracket may
have cancellation, g(u, v) ≤ i(u, v).

Our next result states that in the closed torus, the Goldman bracket always “counts” the
intersection number of two free homotopy classes.

Lemma 7.6 Let a and b denote free homotopy classes of the fundamental group of the closed
oriented torus T. Then i(a, b) = g(a, b). Moreover, [a, b] = ±i(a, b) a · b, where a · b
denotes the based loop product of a representative of a with a representative of b.

Proof Assume first that neither a nor b is a proper power. Thus a admits a simple representa-
tive α, and there exists a class c which admits a simple representative δ such that δ intersects
α exactly once with intersection number +1. Whence, a and c are a basis of fundamental
group of T.
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Let k and l be integers such that b = akcl . The universal cover of T is the euclidean
plane R

2. We can consider a projection map p : R
2 −→ T such that the liftings of α are the

horizontal lines of equation y = n with n ∈ Z and the liftings of δ are vertical lines with
equation x = n with n ∈ Z. Thus there exists a representative β of b such that the liftings of
β are lines of equation y = l

k x + n with n ∈ Z.
One can check that the intersection of α and δ is exactly the projection of {(0, 0), ( k

l , 0),
(2 k

l , 0), . . . , ((l − 1) k
l , 0)}. Moreover, all these points project to distinct points and the sign

of the intersection of α and δ at each of these points is equal to the sign of l.
Thus [a, b] = [a, akcl ] = l ak+1cl . Thus g(a, b) = |l|. Since there are representatives

of a and b intersecting in l points, i(a, b) ≤ g(a, b). By Remark 7.5, i(a, b) = g(a, b).
Assume now a and b are classes which are proper powers. Thus there exist simple closed

curves ε and γ and integers i and j such that εi is a representative of a and γ j is a rep-
resentative of b. Moreover by the first part of this proof, we can assume that if e denotes
the free homotopy class of ε and g denotes the free homotopy class of γ , then ε and γ
intersect in exactly i(e, g) points. Take i “parallel” copies of ε very close to each other and
reconnect them so that they form a representative α of a. Do the same with j copies of γ ,
and denote by β the representative of b we obtain. We can perform this surgery far from
the intersection points of ε and γ so that the number of intersection points of α and β is
exactly i · j · i(ε, γ ), whence (i · j · i(e, g)) ≤ i(a, b). On the other hand, the bracket is
[a, b] = ±(i · j · i(e, g)) (a · b). By Remark 7.5, g(a, b) = i(a, b), as desired. ��

Here is a sketch of the proof of our next result (the detailed proof follows the statement):
Given a free homotopy class x with a simple representative and an arbitrary class y, we
can write the bracket [x, y] as in Theorem 3.4 or as in Theorem 5.3. The conjugacy classes
of the terms of this bracket have representatives as the ones studied in Theorem 2.12 or in
Theorem 4.16. By Proposition 6.2 (resp. Proposition 6.4) the free product on amalgama-
tion (resp. the HNN extension) we are considering satisfies the hypothesis of Theorem 2.12
(resp. Theorem 4.16.) This implies that the terms of the bracket do not cancel.

Theorem 7.7 Let x be a free homotopy class that can be represented by a simple closed
curve on � and let y be any free homotopy class. Then the following non-negative integers
are equal:

(1) The minimal number of intersection points of x and y.
(2) The number of terms in the Goldman Lie bracket [x, y], counted with multiplicity.
(3) The number of terms in the reduced sequence of y determined by x.

In symbols, i(x, y) = g(x, y) = t (x, y).

Proof By Remarks 7.2 and 7.5, g(x, y) ≤ i(x, y) ≤ t (x, y). Hence it is enough to prove
that t (x, y) ≤ g(x, y). By Lemma 7.6, we can assume that � is not the torus.

We first prove that t (x, y) ≤ g(x, y) when x can be represented by a separating simple
closed curveχ . By Theorem 2.7, there exists a cyclically reduced sequence (w1, w2, . . . , wn)

for the free product of amalgamation determined by χ in Remark 3.1 such that the product
w1w2 · · ·wn is a representative of y. If n = 0 or n = 1, then t (x, y) = 0 and the result holds.
If n > 1, by Theorem 3.4, there exists s ∈ {1,−1} such that

s [x, y] =
n∑

i=1

(−1)iw1w2 · · ·wi xwi+1 · · ·wn . (7.1)
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If i and j are such that there is cancellation between the i-th term and the j-th term of the
right hand side of the Eq. (7.1), then (−1)i = −(−1) j . Consequently, i and j have different
parity.

We will work at the basepoint indicated above and will abuse notation by pretending x
and y are elements of the fundamental group of � (see Notation 3.3.) By Proposition 6.2,
the cyclic group generated by x is malnormal in π1(�1) and is malnormal in π1(�2), where
�1 and �2 are as in Remark 3.1. Thus the hypotheses of Theorem 2.12 hold for this free
product with amalgamation. Hence by Theorem 2.12, there is no cancellation in the sum of
the right hand side of Eq. (7.1). Consequently, t (x, y) = g(x, y).

Now we prove the result when x can be represented by a non-separating simple closed
curve λ. Consider the HNN extension of Lemma 5.2 determined by λ. By Theorem 4.5 there
exists a cyclically reduced sequence (g0, tε1 , g1, tε2 , . . . , gn−1, tεn ) such that the product
g0tε1 g1tε2 · · · gn−1tεn is a representative of y. By Theorem 5.3, there exists s ∈ {1,−1} such
that s[x, y] equals
∑

i :εi =1

g0tε1 g1tε2 · · · gi−1xtεi gi · · · gn−1tεn −
∑

i :εi =−1

g0tε1 g1tε2 · · · gi−1ϕ(x)t
εi · · · gn−1tεn .

If t (x, y) > g(x, y) then there is cancellation in the above sum. Therefore there exist two
integers h and k such that εh = 1, εk = −1 and the products

g0tε1 g1tε2 · · · gh−1xtεh tεh+1 · · · gn−1tεn and g0tε1 g1tε2 · · · gk−1ϕ(x)t
εk · · · gn−1tεn

are conjugate. We use now the notations of Lemma 5.2 and the paragraph before Lemma 5.2.
By Proposition 6.2,π1(λ, p) andπ1(λ1, p) are malnormal inπ1(�1, p). Since we are assum-
ing that� is not a torus, then�1 is not a cylinder. Then by Proposition 6.3 the HNN extension
is separated. By Theorem 4.16 the two products above are not conjugate, a contradiction.
Thus the proof is complete. ��
Corollary 7.8 If x and y are conjugacy classes of curves that can be represented by simple
closed curves then t (x, y) = t (y, x).

8 Goldman Lie algebras of unoriented curves

Recall that Goldman [13] defined a Lie algebra of unoriented loops as follows. Denote by π∗
the set of conjugacy classes of π1(�, p). For each x ∈ π∗, denote by x the conjugacy class
of a representative of x with opposite orientation. Set x̂ = x + x and π̂ = {x + x, x ∈ π∗}.
The map ·̂ is extended linearly to the vector space of linear combinations of elements of π∗.
Denote by V the real vector space generated by π̂ , that is, the image of the map ·̂. For each
pair of elements of π∗, x and y, define the unoriented bracket

[̂x, ŷ] =
(
[x, y] + [x, y]

)
+

(
[x, y] + [x, y]

)
= [̂x, y] + [̂x, y].

Observe that we denote the bracket of oriented curves and the bracket of unoriented curves
by the same symbol [ , ].

An unoriented term of the bracket [a + a, b + b] = [̂a, b̂] of a pair of unoriented curves
â = a + a and b̂ = b + b is a term of the form c(z + z), where c is an integer and z is a
conjugacy class, that is, an element of the basis of V multiplied by an integer coefficient.

Let u(x, y) denote the number of unoriented terms of the bracket [̂x, ŷ] considered as a
bilinear map on V , counted with multiplicity. This is the sum of the absolute value of the
coefficients of the expression of [̂x, ŷ] in the basis π̂ .
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Example 8.1 With the notations of Lemma 7.6,

[̂a, b̂] = [̂a,̂akcl ] = ±i(a, b)(̂ak+1cl − ̂ak−1cl).

Using the fact that every free homotopy class of curves in the torus admits a power of a simple
closed curve as representative, we can show that for every pair of free homotopy classes x
and y,

u(x, y) = 2 · i(x, y) = 2 · g(x, y) = 2 · t (x, y).

The strategy of the proof of our next theorem is similar to that of Theorem 7.7, namely, we
write the terms of the bracket in a certain form (using Theorem 3.4 or Theorem 5.3). By the
results on Sect. 6, we can apply Theorems 2.14 and 4.19 to show that the pairs of conjugacy
classes of these sums which have different signs are distinct by Theorems 2.14 and 4.19.

Theorem 8.2 Let x and y be conjugacy classes of π1(�, p) such that x can be represented
by a simple closed curve. Then the following non-negative integers are equal

(1) The number of unoriented terms of the bracket [̂x, ŷ], u(x, y).
(2) Twice the minimal number of intersection points of x and y, 2 · i(x, y).
(3) Twice the number of terms of the Goldman bracket on oriented curves, counted with

multiplicity, 2 · g(x, y).
(4) Twice the number of terms of the sequence of y with respect to x, 2 · t (x, y).

In symbols,

u(x, y) = 2 · i(x, y) = 2 · g(x, y) = 2 · t (x, y).

Proof By Remark 7.5, u(x, y) ≤ 2 · i(x, y) = 2 · t (x, y). By Example 8.1, we can assume
that � is not the torus. By Theorem 7.7, it is enough to prove that u(x, y) = 2 · t (x, y).
Assume that u(x, y) < 2 · t (x, y).

By definition the bracket [̂x, ŷ] is an algebraic sum of terms of the form ẑ = z + z, where
z is a conjugacy class of curves and z and z are terms of one of the four following brackets:
[x, y], [x, y], [x, y] and [x, y]. By Theorem 7.7, the number of terms of each of the four
brackets above is t (x, y). Since u(x, y) < 2 · t (x, y) there has to be one term belonging
to one of above four brackets that cancels with a term of another of those brackets. Denote
one of these terms that cancel by t1 and the other one by t2. If t1 is a term of [u, v], where
u ∈ {x, x} and v ∈ {y, y} then t2 is a term of of one of the following brackets: [u, v], [u, v],
or [u, v]. Hence it suffices to assume that t1 is a term of [x, y] and to analyze each of the
following three cases.

(1) t2 is a term of [x, y]
(2) t2 is a term of [x, y]
(3) t2 is a term of [x, y]

Assume first that x can be represented by a separating curveχ . By Theorem 2.7, there exists
a cyclically reduced sequence (w1, w2, . . . wn) in the amalgamating product of Remark 3.1
determined by χ such that the productw1w2 · · ·wn is a representative of y. By Theorem 3.4,
then there exists s ∈ {1,−1} and i, j ∈ {1, 2, . . . , n} such that t1 = s(−1)iw1w2 · · ·wi xwi+1

· · ·wn and one of the following holds.

(1) t2 = s(−1) j+1w1w2 · · ·w j x−1w j+1 · · ·wn .

(2) t2 = s(−1) j+1w−1
n w−1

n−1 · · ·w−1
j+1xw−1

j · · ·w−1
1 .

(3) t2 = s(−1) jw−1
n w−1

n−1 · · ·w−1
j+1x−1w−1

j · · ·w−1
1 .
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(Note that when we change direction of one of the elements of the bracket, x or y, there
is a factor (−1) because one of the tangent vectors at the intersection point has the opposite
direction. Also, changing direction of both x and y does not change signs.)

Let us study first case (1). If t1 and t2 cancel then (−1)i = −(−1) j+1 and the prod-
ucts w1w2 · · ·wi xwi+1 · · ·wn and w1w2 · · ·w j x−1w j+1 · · ·wn are conjugate. Therefore i
and j have equal parities. By Proposition 6.2, the subgroup generated by x is malnormal
in the two amalgamated groups of the amalgamated product of Remark 3.1. (We are again
treating x as an element of the fundamental group of the surface.) By Lemma 6.1, x and
x−1 are not conjugate. Hence we can apply Theorem 2.12, with a = x and b = x−1 to
show that w1w2 · · ·wi xwi+1 · · ·wn and w1w2 · · ·w j x−1w j+1 · · ·wn are not conjugate, a
contradiction.

Similarly, by Theorem 2.14 and Proposition 6.4, Cases (2) and (3) are not possible.
Now assume that x has a non-separating representative. By Theorem 4.5 there exist a

cyclically reduced sequence (g0, tε1 , g1, . . . gn−1, tεn ) whose product is an element of y. By
Theorem 5.3 there exists an integer i such that the term t1 has the form sεi ·g0tε1 g1 · · · gi utεi · · ·
gn−1tεn where u = x if εi = 1 and u = ϕ(x) if εi = −1. By Theorem 5.3 there exist an
integer j such that the term t2 has one of the following forms.

(1) t2 = −sε j · g0tε1 g1 · · · g jvtε j · · · gn−1tεn where v = x−1 if ε j = 1 and v = ϕ(x−1) if
ε j = −1.

(2) t2 = sε j · g−1
n−1t−εn−1 g−1

n−2t−εn−2 · · · g−1
j vt−ε j · · · g−1

1 t−ε1 g−1
0 t−εn , where v = x if ε j =

−1 and v = ϕ(x) if ε j = 1.
(3) t2 = −sε j · g−1

n−1t−εn−1 g−1
n−2t−εn−2 · · · g−1

j v−1t−ε j · · · g−1
1 t−ε1 g−1

0 t−εn where v = x if
ε j = −1 and v = ϕ(x) if ε j = 1.

The argument continues similarly to that of the separating case: By Proposition 6.2 and
Proposition 6.3 the HNN extension is separated and the subgroups we are considering are
malnormal. By Theorem 4.16 and Lemma 6.1, t2 cannot have the form described in Case (1).
Cases (2) and (3) are ruled out by Theorem 4.19 and Proposition 6.4. ��

Let n be a positive integer and let x be a free homotopy class with representative χ .
Denote by xn the conjugacy class of the curve that wraps n times around χ . We can extend
Theorem 8.2 to the case of multiple curves using the same type of arguments.

Theorem 8.3 Let n be a positive integer and let x and y be conjugacy classes of π1(�, p)
such that x can be represented by a simple closed curve χ . Then the following equalities
hold.

u(xn, y) = n · u(x, y) = 2i(xn, y) = 2 · n · i(x, y) = 2 · g(xn, y) = 2 · n · g(x, y)

= 2 · n · t (x, y).

The next lemma is well known but we did not find an explicit proof in the literature.
A stronger version of this result (namely, i(x, x) equals twice the minimal number of self-
intersection points of x) is proven in [9] for the case of surfaces with boundary.

Lemma 8.4 If x is a homotopy class which does not admit simple representatives then the
minimal intersection number of x and x is not zero. In symbols, i(x, x) �= 0.

Proof Let α and β be two transversal representatives of x . Let χ be a representative of x
with minimal number of self-intersection points and let P be a self-intersection point of χ .
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Fig. 9 An example of distinct essentially intersecting curves with zero bracket

Let p : H −→ � be the universal cover of �. Consider two distinct lifts of χ , χ̃1 and χ̃2

which intersect at a point Q of H such that p(Q) = P . Consider a lift of α, α̃ such that the
endpoints of α̃ and χ1 coincide. Analogously, consider a lift of β, β̃ such that the endpoints
of β̃ and χ2 coincide. Since χ intersects in a minimal number of points, the endpoints of the
lifts χ1 and χ2 are linked. Thus the endpoints of α1 and β̃ are linked. Hence α̃ and β̃ intersect
in H . Consequently, α and β intersect in �. ��

Our next result is a global characterization of free homotopy classes with simple repre-
sentatives in terms of the Goldman Lie bracket.

Corollary 8.5 Let x be a free homotopy class. Then x contains a power of a simple repre-
sentative if and only if for every free homotopy class y the number of terms of the bracket
of x and y is equal to the minimal intersection number of x and y. In symbols, x contains
a power of a simple representative if and only if g(x, y) = i(x, y) for every free homotopy
class y.

Proof If x contains a simple representative and y is an arbitrary free homotopy class then
g(x, y) = i(x, y) by Theorem 7.7. If x does not have a simple representative then by
Lemma 8.4, i(x, x) ≥ 1. On the other hand, by the antisymmetry of the Goldman Lie bracket
we have [x, x] = 0. Thus g(x, x) = 0 and the proof of the corollary is complete. ��

9 Examples

The assumption in Theorems 7.7 and 8.2 that one of the curves is simple cannot be dropped.
Goldman [13] gave the following example, attributed to Peter Scott: For any conjugacy class
a, the Lie bracket [a, a] = 0. On the other hand, if a cannot be represented by a power of a
simple curve, then any two representatives of a cannot be disjoint.

Here is a family of examples:

Example 9.1 Consider the conjugacy classes of the curves aab and ab in the pair of pants
(see Fig. 9.) The term of the bracket correspond to p1 is the conjugacy class of aabba and the
term of the bracket corresponding to p2 is baaab.The conjugacy classes of both terms are
the same, and the signs are opposite. Then the Goldman bracket of these conjugacy classes
is zero. Nevertheless, the minimal intersection number is two.
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More generally, for every pair of positive integers n and m, the curves anb and amb have
minimal intersection 2 min(m, n). Nevertheless, the bracket of these pairs vanishes, that is,
[anb, amb] = 0. (The intersection number, as well as the Goldman Lie bracket, can be
computed using results in [3].)

10 Application: factorization of Thurston’s map

Denote by C(�) the set of all free homotopy classes of undirected curves on a surface �
which admit a simple representative. Consider the map φ : C(�) −→ V C(�), defined by
φ(a)(b) = [a, b], using the notation of Sect. 8. For each (reduced) linear combination c of
elements of the vector space W , define a map abs : V −→ Z≥0, where abs(c) is the sum of
the absolute values of the coefficients of c. The function abs is essentially an L1 norm on V.

By Theorem 7.7 the composition abs ◦ φ : C(�) −→ Z
C(�)
≥0 is (up to a non-zero multiple)

the map defined by Thurston in [29] which he used to define the first mapping class group
invariant compactification of Teichmüller space.

11 Application: decompositions of the vector space generated by conjugacy classes

For each w in W, the vector space of free homotopy classes of curves, the adjoint map
determined by w, denoted by adw is defined for each y ∈ W by adw(y) = [y, w].

Let a denote the conjugacy class of a closed curve on a surface � and let n be a non-
negative integer. Denote by Wn(a) the subspace of W generated by the set of conjugacy
classes of oriented curves with minimal number of intersection points with a equal to n.

In this section we prove that if a is the conjugacy class of a simple closed curve then Wn(a)
is invariant under ada . Moreover, we give a further decomposition of Wn(a) into subspaces
invariant under ada .

11.1 The separating case

Let χ be a separating simple closed curve. Let G ∗C H be the amalgamated free product
defined by χ in Remark 3.1. Let (w1, w2, . . . , wn) be a cyclically reduced sequence for this
amalgamated free product. Denote by W (w1, w2, . . . , wn) the subspace generated by the
conjugacy classes which have representatives of the form v1v2 · · · vn where for each i in
{1, 2, . . . , n}, vi is an element of the double coset Cwi C .

Proposition 11.1 With the notations above, we have

(1) The subspace Wn(x) is the disjoint union of the subspaces W (w1, w2, . . . , wn), where
(w1, w2, . . . , wn) runs over all cyclically reduced sequences of n terms of the free pro-
duct with amalgamation determined by x.

(2) The subspaces W (w1, w2, · · · , wn) and Wn(x) are invariant under adx , the adjoint map
determined by x.

Proof First prove (1). Consider a conjugacy class y ∈ Wn(x). By Theorem 7.7 there
exists a cyclically reduced sequence (w1, w2, . . . , wn) with n terms for the amalgamat-
ing product of Remark 3.1 determined by a representative of x with product in y. Hence
y ∈ W (w1, w2, . . . , wn).
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Observe that for each i ∈ {1, 2, . . . , n}, (w1, w2, . . . , wi x, wi+1, . . . wn) is a cyclically
reduced sequence. Thus (2) is an immediate consequence of (1), Theorem 3.4 and the defi-
nition of the subspaces W (w1, w2, . . . , wn). ��
Remark 11.2 It is not hard to see that the subspaces W (w1, w2, . . . , wn) are also invariant
under the map induced by the Dehn twist around x . Indeed, using Lemma 3.2, it is not hard
to see that the Dehn twist around x of the conjugacy class ofw1w2 · · ·wn can be represented
by

w1xw2xw3xw4x · · ·wn x or w1xw2xw3x · · ·wn x

where the choice between the two conjugacy classes above is determined by the orientation
of the surface, the orientation of x and the subgroup to which w1 belongs.

Question 11.3 Denote by X the cyclic group of automorphisms of W generated by adx . Let
(w1, w2, . . . , wn) be a cyclically reduced sequence. It is not hard to see that the subspace
W (w1, w2, . . . , wn) is invariant under X . Is W (w1, w2, . . . , wn) the minimal (with respect
to inclusion) subspace of W containing the conjugacy class of w1w2, · · · , wn and invariant
under X?

11.2 The non-separating case

We now develop the analog of Subsect. 11.1 for the non-separating case. In the separating
case, the terms of cyclic sequences of double cosets belong to alternating subgroups. In the
non-separating case, there is a further piece of information, namely the sequence of ε’s. Thus
the arguments, although essentially the same, present some extra technical complications.
Also, there are more invariant subspaces surfacing.

Let γ denote a separating curve. Let G∗ϕ be the HNN extension constructed in Lemma 5.2
with γ . Let (g0, tε1 , g1, tε2 , . . . , gn−1, tεn ) denote a cyclically reduced sequence. Denote by
W (g0, ε1, g1, ε2, . . . , gn−1, εn) the subspace of W generated by the conjugacy classes which
have representatives of the form h0tε1 h1tε2 · · · hn−1tεn where for each i ∈ {1, 2, . . . , n}, hi

is an element of the double coset C−εi gi Cεi+1 . Let (ε1, ε2, . . . , εn) be a sequence of inte-
gers such that for each i ∈ {1, 2, . . . , n}, εi ∈ {−1, 1}. Denote by W (ε1, ε2, . . . , εn) the
subspace of W generated by the conjugacy classes which have representatives of the form
h0tε1 h1tε2 · · · hn−1tεm where (h0, ε1, h1, ε2, · · · , hn−1, εn) is a cyclically reduced sequence.

The following result can be proved with arguments similar to those of the proof of Propo-
sition 11.1, using Theorem 5.3 and Theorem 8.2.

Proposition 11.4 With the above notations,

(1) The subspaces W (g0, ε1, g1, ε2, . . . , gn−1, εn), W (ε1, ε2, . . . , εn) and Wn(y) are invari-
ant under ady , the adjoint map determined by y.

(2) The subspace Wn(y) is the disjoint union of subspaces of the form W (ε1, ε2, . . . , εn)

where (ε1, ε2, . . . , εn) is a sequence of integers such that for each i ∈ {1, 2, . . . , n},
εi ∈ {−1, 1}.

(3) The subspace W (ε1, ε2, . . . , εn) is a disjoint union of W (g0, ε1, g1, ε2, . . . , gn−1, εn)

where (g0, ε1, g1, ε2, . . . , gn−1, εn) runs over cyclically reduced sequences with a
sequences of ε’s given by (ε1, ε2, . . . , εn).

Remark 11.5 It is not hard to see that the subspaces W (g0, ε1, g1, ε2, . . . , gn−1, εn) are also
invariant under the map induced by the Dehn twist around y. Indeed, using Lemma 3.2, one

123



56 Geom Dedicata (2010) 144:25–60

sees that the Dehn twist around y of the conjugacy class of g0, tε1, g1, tε2 , . . . , gn−1, tεn )

(where (g0, tε1, g1, tε2 , . . . , gn−1, tεn ) is a cyclically reduced sequence) is represented by
one of the following products:

g0u1tε1 g1u1tε2 . . . , gn−1untεn ,

where one of the following holds.

1. For each i ∈ {1, 2, · · · , n}, if εi = 1 then ui = y and if εi = −1 then ui = ϕ(y).
2. For each i ∈ {1, 2, · · · , n}, if εi = 1 then ui = y and if εi = −1 then ui = ϕ(y).

where the choice between (1) and (2) is determined by the orientation of the surface and the
orientation of y.

12 Application: the mapping class group and the curve complex

Let � be a compact oriented surface. By �g,b we denote an oriented surface with genus g
and b boundary components. If � is a surface, we denote by MCG(�) the mapping class
group of �, that is, the set of isotopy classes of orientation preserving homeomorphisms of
�. We study automorphisms of the Goldman Lie algebra that are related to the mapping
class group. The first two results, Theorems 12.4 and 12.5, apply to all surfaces. The stronger
result, Theorem 12.6, applies only to surfaces with boundary.

Now we recall the curve complex, defined by Harvey in [15]. The curve complex C(�) of
� is the simplicial complex whose vertices are isotopy classes of unoriented simple closed
curves on � which are neither null-homotopic nor homotopic to a boundary component. If
� �= �0,4 and � �= �1,1 then a set of k + 1 vertices of the curve complex is the 0- skeleton
of a k-simplex if the corresponding minimal intersection number of all pairs of vertices is
zero, that is, if every pair of vertices have disjoint representatives.

For �0,4 and �1,1 two vertices are connected by an edge when the curves they represent
have minimal intersection (2 in the case of �0,4 , and 1 in the case of �1,1). If b ≤ 3 the
complex associated with �0,b is empty.

The following isomorphism is a theorem of Ivanov [17] for the case of genus at least two.
Korkmaz [20] proved the result for genus at most one and Luo [23] gave another proof that
covers all possible genera. The mapping class group of a surface� is denoted by MCG(�).
Our discussion below is based on the formulation of Minsky [27].

Theorem 12.1 (Ivanov-Korkmaz-Luo)

(1) The natural map h : MCG(�) −→ AutC(�) is an isomorphism in all cases except for
�1,2 where it is injective with index 2 image.

(2) (Luo, [23]) Any automorphism of C(�1,2) preserving the set of vertices represented by
separating loops is induced by a self-homeomorphism of the surface �1,2.

We need the following result from [5].

Theorem 12.2 (Chas - Krongold) Let � be an oriented surface with non-empty boundary
and let x be a free homotopy class of curves in �. Then x contains a simple representative
if and only if 〈x, x3〉 = 0, where x3 is the conjugacy class that wraps around x three times.

Lemma 12.3 Let x be a free homotopy class of oriented simple closed curves. Then x has a
non-separating representative if and only if there exists a simple class y such that the minimal
intersection number of x and y is equal to one.
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Proof If x has a non-separating representative, the existence of y with minimal intersection
number equal to one can be proved as in the proof of Lemma 5.1. Conversely, if x contains
a separating representative, then the minimal intersection number of x and any other class is
even. ��
Theorem 12.4 Let � be a bijection on the set π∗ of free homotopy classes of closed curves
on an oriented surface. Suppose the following:

(1) � preserves simple curves.
(2) If � is extended linearly to the free Z module generated by π∗ then � preserves the

Goldman Lie bracket. In symbols [�(x),�(y)] = �([x, y]) for all x, y ∈ π∗.
(3) For all x ∈ π∗, �(x) = �(x).

Then the restriction of � to the subset of simple closed curves is induced by an element
of the mapping class group. Moreover, if � �= �1,2 then the restriction of � to the subset of
simple closed curves is induced by a unique element of the mapping class group.

Proof Since �(x) = �(x), � induces a bijective map �̂ on π̂ = {x + x : x ∈ π∗}.
Since � preserves the oriented Goldman bracket and the “change of direction”, then it

preserves the unoriented Goldman bracket. Let x be a class of oriented curves that contains
a simple representative and let y be any class.

Since �̂ preserves the unoriented Goldman Lie bracket, by Theorem 8.2, the minimal
intersection number of x and y equals the minimal intersection number of �̂(x) and �̂(y).
Then �̂ ∈ AutC(�). Thus by Theorem 12.1(1), �̂ is induced by an element of the mapping
class. Moreover if the surface is not�1,2 then� is induced by unique element of the mapping
class group.

Now we study�1,2. By Lemma 12.3, x is a separating simple closed curve, if and only if
�(x) is separating. Thus �̂ maps bijectively the set of unoriented separating simple closed
curves onto itself. Hence by Theorem 12.1(2), �̂ is induced by an element of the mapping
class group. ��

By arguments similar to those of Proposition 12.4, one can prove the following.

Theorem 12.5 Let � be a bijection on the set π̂ of unoriented free homotopy classes of
closed curves on an oriented surface. Suppose the following

(1) � preserves simple curves.
(2) If � is extended linearly to the free Z module generated by π∗ then � preserves the

unoriented Goldman Lie bracket. In symbols [�(x), �(y)] = �([x, y]) for all x, y ∈ π̂ .

Then the restriction of � to the subset of simple closed curves is induced by an element of
the mapping class group. Moreover, if � �= �1,2 then the restriction of � to the set of free
homotopy classes with simple representatives is induced by a unique element of the mapping
class group.

Theorem 12.6 Let � be a bijection on the set π∗ of free homotopy classes of curves on an
oriented surface with non-empty boundary. Suppose the following

(1) If � is extended linearly to the free Z module generated by π∗ then [�(x),�(y)] =
�([x, y]) for all x, y ∈ π∗.

(2) For all x in π∗, �(x) = �(x).
(3) For all x in π∗, �(x3) = �(x)3.

Then the restriction of � to the set of free homotopy classes with simple representatives is
induced by an element of the mapping class group. Moreover, if� /∈ {�1,1, �2,0, �0,4} then
� is induced by a unique element of the mapping class group.
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Proof Let x be an oriented closed curve. By hypothesis, [�(x),�(x)3] = �([x, x3]). Thus
[x, x3] = 0 if and only if [�(x),�(x)3] = 0. Thus by Theorem 12.2, �(x) is simple if and
only if x is simple. Then the result follows from Theorem 12.4. ��

All these results “support” Ivanov’s statement in [18]:

Metaconjecture “Every object naturally associated with a surface S and having a suffi-
ciently rich structure has Mod(S) as its group of automorphisms. Moreover, this can be
proved by a reduction theorem about the automorphisms of C(S).”

In this sense, the Goldman Lie bracket combined with the power maps, have a “sufficiently
rich” structure.

13 Questions and open problems

Problem 13.1 Etingof [11] proved using algebraic tools that the center of Goldman Lie
algebra of a closed oriented surface consists of the one dimensional subspace generated by
the trivial loop. On the other hand, if the surface has non-empty boundary, it is not hard to see
that linear combinations of conjugacy classes of curves parallel to the boundary components
are in the center. Hence it seems reasonable to conjecture that the center consists of linear
combinations of conjugacy classes of boundary components. It will be interesting to use the
results of this work to give a complete characterization of the center of the Goldman Lie
algebra.

If u is an element of the vector space associated with unoriented curves on a surface, and u
is a linear combination of classes that each admit simple representative and is not in the center
then u is not in the center of the Goldman Lie algebra. To prove this, we need to combine
our results with the fact that given two different conjugacy classes a and b that admit simple
representatives, there exists a simple conjugacy class c such that the intersection numbers
i(a, c) and i(b, c) are distinct (see [12] for a proof that such c exists). Nevertheless, by results
of Leininger [21] we know that this argument cannot be extended to the cases of elements of
the base that only have self-intersecting representatives.

Problem 13.2 As mentioned in the Introduction, Abbaspour [1] studied whether a three
manifold is hyperbolic by means of the generalized Goldman Lie algebra operations. He
used free products with amalgamations for this study. We wonder if it would be possible
to combine his methods with ours, to give a combinatorial description of the generalized
String Topology operations on three manifolds. In this direction, one could study the relation
between number of connected components of the output of the Lie algebra operations and
intersection numbers.

Problem 13.3 We showed that subspaces W (w1, w2, . . . , wn) defined in Subsect. 11.1 are
adx -invariant. Let z be a representative of a conjugacy class in W (w1, w2, . . . , wn). It would
be interesting to define precisely and study the “number of twists around x” of the sequence
(adn

x (z))n∈Z and how this number of twists changes under the action of adx . Observe also that
the Dehn twist around x increases or decreases the number of twists at a faster rate. These
problems are related to the discrete analog of Kerckhoff’s convexity [19] found by Luo [24].

Problem 13.4 The Goldman Lie bracket of two conjugacy classes, one of them simple, has
no cancellation. On the other hand, there are examples (for instance Example 9.1) of pairs of
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classes with bracket zero and non-zero minimal intersection number. How does one charac-
terize topololgically pairs of intersection points for which the corresponding terms cancel?
In other words, what “causes” cancellation? The tools to answer to this question may involve
the study of Thurston’s compactication of Teichmüller space in the context of Bonahon’s
work on geodesic currents [2].

Problem 13.5 Dylan Thurston [28] proved a suggestive result: Let m be a union of conju-
gacy classes of curves on an orientable surface and let s be the conjugacy class of a simple
closed curve. Consider representatives M of m, S of s, which intersect (and self-intersect)
in the minimum number of points. Denote by P one of the self-intersection points of M .
Denote by M1 and M2 the two possible ways of smoothing the intersection at P. Denote by
m1 and m2 respectively the conjugacy classes of M1 and M2. Then Dylan Thurston’s result
is

i(m, s) = max(i(m1, s), i(m2, s)).

These two “smoothings” are the two local operations one makes at each intersection point
to find a term of the unoriented Goldman Lie bracket (when the intersection point P is not a
self-intersection point of a curve). It might be interesting to explore the connections of Dylan
Thurston’s result and our work.

Remark 13.6 In a subsequent work we will give a combinatorial description of the set of
cyclic sequences of double cosets under the action of ad. Also, we will study under which
assumptions the cyclic sequences of double cosets are a complete invariant of a conjugacy
class.
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