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We introduce the notion of the center of a point for discrete dynamical systems and we study
its properties for continuous interval maps. It is known that the Birkhoff center of any such
map has depth at most 2. Contrary to this, we show that if a map has positive topological
entropy then, for any countable ordinal α, there is a point xα ∈ I such that its center has depth
at least α. This improves a result by [Sharkovskii, 1966].

1. Introduction

The (Birkhoff ) center of a discrete dynamical sys-
tem is defined to be the closure of the set of its
recurrent points and so it contains all the informa-
tion about its “recurrent objects”. In this paper
we introduce the notion of the center of a point
for discrete dynamical systems, and we study its
properties for continuous interval maps with posi-
tive topological entropy. In [Simó, 1997] the same
notion for a special kind of vector fields was stud-
ied and results in the spirit of ours were obtained.
Earlier, a question posed to A. R. D. Mathias on
the depth of the center of a point led to papers
[Mathias, 1995, 1996, 1997] on the subject.

Throughout this paper, N and Z+ will denote
the set of positive and non-negative integers, re-
spectively. Let X be a compact metric space and
let f : X −→ X be a continuous map. The ω-
limit set of x, denoted by ωf (x), is the set of points
y ∈ X for which there exists a sequence of posi-
tive integers {nk}k∈N tending to infinity such that
limk→∞ fnk(x) = y. For any ordinal α we define by
transfinite induction

W 0
f (x) = wf (x) ,

Wα+1
f (x) =

⋃
z∈wα

f
(x)

ωf (z) ,
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and, when α is a limit ordinal,

Wα
f (x) =

⋂
β<α

W
β
f (x) ,

Since the ω-limit set of a point is closed and
invariant, by transfinite induction it can be proved

that W β
f (x) ⊃Wα

f (x), for each β < α. Hence, there

is an ordinal γ such that W β
f (x) = W γ

f (x) for any

β > γ. The set W γ
f (x) is defined to be the center of

x and is denoted by Cf (x). The first γ satisfying the
above property is called the depth of x with respect
to f and is denoted by df (x). In [Mathias, 1995] it
is shown that if X is a complete separable metric
space then, for each x ∈ X, df (x) is at most the
first uncountable ordinal. However, we conjecture
that the number df (x) is always countable.

Remark. The above definitions are related to the
notion of the center of a dynamical system. Indeed,
if X is a compact metric space and f is a continu-
ous map from X to itself then the center of f can
also be defined as follows. Set X0 = ∪x∈Xωf (x),

Xα+1 = ∪z∈Xαωf(z) when α ≥ 0 is a nonlimit or-
dinal and Xα = ∩β<αXβ when α is a limit ordinal.
Then, the center of f coincides with Xα∗ where α∗

is the first countable ordinal such that Xα∗ = Xβ

for each β > α∗ (see [Birkhoff & Smith, 1928]).

In [Mathias, 1997] it is proved that if X is a
complete separable metric space then Cf (x) is the
union of the ω-limit sets of all recurrent points in
ωf (x) (recall that z ∈ X is recurrent if and only if
z ∈ ωf (z)). In [Mathias, 1996] it is shown that any
countable ordinal can be the depth of the center of
a point. This latter result is proved for the space of
the sequences of five symbols with the full one-sided
shift.

The goal of this paper is to study the center and
the depth of the center when the space X is a closed
interval of the real line and the map f has positive
topological entropy. In the sequel, Ω denotes the
first uncountable ordinal. Our main result is the
following.

Theorem A. Let I be a compact real interval.
Then f ∈ C(I, I) has positive topological entropy if
and only if there exists a point x ∈ I and a family
{ωt}t∈I of perfect sets such that

(a) For any t there exists an xt ∈ I such that
ωt = ωf (xt),

(b) ωt ⊂ ωs ⊂ ωf (x) and ωt 6= ωs, for any t < s,
(c) for any α < Ω and any t < s there exists y ∈ ωs

such that Cf (y) = ωt and df (y) ≥ α.

We conjecture that Condition (c) in the above
theorem can be improved so that the depth of y is
exactly α (see Theorem 3.11).

Remark. If f ∈ C(I, I) has zero topological entropy
then it follows easily from [Sharkovskii, 1968] that
df (x) ∈ {0, 1} for each x ∈ I (see also Theorem 6.5
of [Bruckner & Smı́tal, 1993] and its proof).

In the sixties, Sharkovskii stated the following
result (see [Sharkovskii et al., 1993, Theorem 3.11]
for the most recent reference): Assume that f ∈
C(I, I). Then the following conditions are equiva-
lent:

(a) f has a periodic orbit of period different from a
power of two.

(b) There is a countable number of invariant closed
sets ordered linearly by inclusion and such that
there are dense trajectories in each of these sets
(this means that they are homeomorphic to the
Cantor set ).

(c) There exist an uncountable set B ⊂ I such
that the family {ωf (x)}x∈B is ordered linearly by
inclusion.

The equivalence between Statements (a) and
(b) follows from [Sharkovskii, 1966]. On the other
hand, the equivalence between Statements (a) and
(c) is said to follow from [Sharkovskii, 1968] (see, for
instance, [Sharkovskii et al., 1993, Theorem 3.11]
or [Sharkovskii, 1982]). Since Statement (a) holds
if and only if the topological entropy h(f) of f is
positive (see [Misiurewicz, 1979]), Theorem A gives
a stronger result than the equivalence between (a)
and (b) of Sharkovskii’s Statement. Nevertheless,
(a) and (c) are not equivalent, as it is shown by the
following theorem.

Theorem B. There is a map f ∈ C(I, I) with
zero topological entropy but having a family of points
{xt}t∈[0, 1] ⊂ I such that ωf (xt) is a proper subset
of ωf (xs) whenever t < s.

Proof. By [Bruckner & Smı́tal, 1993] there is a map
f ∈ C(I, I) with h(f) = 0 and such that, for some
x, ωf (x) = Q ∪ {Tn}∞n=1, where Q is a Cantor set
and Tn are pairwise disjoint sets of isolated points
of ωf (x). Moreover, any Tn can be enumerated as
Tn = {tn, k}∞k=−∞ with f(tn, k) = tn, k+1 and, for
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any M ⊂ N, the set Q ∪ ∪n∈MTn is the ω-limit set
of a point.

Now let D be a countable dense subset of [0, 1]
(e.g. the set of rationals from [0, 1]) and let {nr}r∈D
be an enumeration of the set N by numbers from D.
Then, definingQt = Q∪(∪r≤tTnr) for any t ∈ [0, 1],
the proof is complete. �

Remark. Sharkovskii pointed out that Theorem A
(and its abstract version, Theorem 3.11 below) im-
ply that the depth of the center of a dynamical sys-
tem generated by a triangular map of the square can
be any countable ordinal. This generalizes State-
ment (iii) of the theorem in [Kolyada & Sharkovskii,
1991]. The proof of this fact is easy. Let I = [0, 1],
and let f ∈ C(I, I) be a map which contains a home-
omorphic copy of the shift on the space of sequences
of two symbols. For instance take

f(x) =


3x for x ∈ [0, 1/3] ,

1 for x ∈ [1/3, 2/3] , and

−3x+ 3 otherwise .

For a given ordinal α take a point xα, whose cen-
ter has depth α (such a point exists by Theo-
rem 3.11), and denote W = ωf (xα) ∪ {fn(xα)}∞n=0.
Let g ∈ C(I2, I2) be such that, for any (x, y) ∈ I2,
we have g(x, y) = y if y = 1 or if x ∈ W and
y = 0, and g(x, y) > y otherwise. Finally, put
F (x, y) = (f(x), g(x, y)). Then it can be easily
shown that the depth of the center of F is α.

To prove Theorem A we will proceed as follows.
Note that Statements (a)–(c) imply positive topo-
logical entropy because any map with zero topologi-
cal entropy cannot have two different perfect ω-limit
sets ωf (x1) ⊂ ωf(x2) (cf., e.g. [Sharkovskii, 1968;
Sharkovskii et al., 1993] or [Bruckner & Smı́tal,
1993]). To prove that (a)–(c) of Theorem A are nec-
essary for positive topological entropy we perform
several steps. In Sec. 3, we prove that an analo-
gous result holds for the full one-sided shift in the
space of sequences of two symbols. Afterwards, in
Sec. 4, we extend this result first to piecewise mono-
tone maps on the interval and, finally, to arbitrary
maps in C(I, I). Section 2 contains a few auxiliary
results.

2. Auxiliary Results

This section is devoted to a few technical auxiliary

results of various nature. We begin with the follow-
ing elementary lemma, whose proof we omit.

Lemma 2.1. Let X and Y be compact metric
spaces. Assume that g : Y −→ Y, τ : X −→ X
and ϕ : Y −→ X are continuous maps such that
ϕ ◦ g = τ ◦ ϕ. Then, for every x ∈ Y, ωτ (ϕ(x)) =
ϕ(ωg(x)).

Corollary 2.2. With the notation from the preced-
ing lemma, for each x ∈ M, the following state-
ments hold:

(a) Wα
τ (ϕ(x)) = ϕ(Wα

g (x)), for any ordinal α.
(b) dτ (ϕ(x)) ≤ dg(x).
(c) If ϕ is a homeomorphism then dτ (ϕ(x)) =

dg(x).

Proof. Statement (a) can be proved by transfinite
induction and Lemma 2.1. Statements (b) and (c)
are direct consequences of Lemma 2.1 and (a). �

Proposition 2.3. Let f be a continuous self-map
of a compact metric space Y such that for some
r ∈ N and Y ∗ ⊂ Y, Y = ∪r−1

n=0f
n(Y ∗) and

f i(Y ∗) ∩ f j(Y ∗) = ∅ whenever 0 ≤ i < j < r.
Then, for each y ∈ Y and each ordinal α, Wα

f (y) =

∪r−1
k=0W

α
fr(f

k(y)) and dfr(y) = df (y).

Proof. We note that for each z ∈ Y and each ordi-
nal γ, by Corollary 2.2,

(i) f l(W γ
fr(z)) = W γ

fr(f
l(z)) for each l ∈ N, and

(ii) W γ
fr(f

i(z))∩W γ
fr (f

j(z)) = ∅ whenever 0 ≤ i <
j < r (this can be easily deduced from the as-
sumption f i(Y ∗) ∩ f j(Y ∗) = ∅).

The first statement of the proposition can be proved
by induction on α. An elementary proof for α = 0
can be found, e.g. in [Block & Coppel, 1992]. Now
the first statement for α > 0 and the second one
follow from (i) and (ii). �

We conclude the section stating and proving a
simple lemma about the computation of the depth
of a point from the depth of another point.

Lemma 2.4. Let f : X −→ X, let x, u ∈ X and
let α be a countable ordinal. Assume that Wα

f (u) =
ωf (x) and either df (u) ≥ α or df (x) > 0. Then
df (u) = α+ df (x).
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Proof. Let β be a countable ordinal. By transfinite

induction it can be proved easily that Wα+β
f (u) =

W
β
f (x). Therefore, for each countable ordinal β ≥

df (x),

Wα+β
f (u) = W β

f (x) = W
df (x)
f (x) = Cτ (x) .

So, df (u) ≤ α+df (x). If df (x) = 0 then the lemma
holds because df (u) ≥ α. If df (x) ≥ 1 then for each
ordinal 0 ≤ β < df (x) we have

W
α+β
f (u) = W

β
f (x) 6= W

df (x)
f (x) = W

α+df (x)
f (u)

and, hence, df (u) ≥ α+ df (x). This completes the
proof of the lemma. �

3. Symbolic Dynamical Systems

In this section we prove that Theorem A holds with
I and f replaced by the standard one-sided shift
with two elements (see Theorem 3.11).

In the rest of this section X denotes the space
{0, 1}N endowed with the product topology. Hence,
X is compact. Let τ be the shift map from X
to itself, i.e. τ(x) = (x2, x3, . . .), for any x =
(x1, x2, . . .) ∈ X.

As usual, the concatenation of any two finite
sequences x and y of zeroes and ones is denoted by
xy. For n ∈ Z+ ∪ {∞} the concatenation of x with

itself n times is denoted by xn. In particular, 00

and 10 denote the empty sequence. If x and y are
sequences (finite or infinite) we say that x is con-
tained in y provided y = z1xz2, where z1 and z2

can be empty. Also, if the first l symbols of x coin-
cide with the first l symbols of y we write x =l y.
Lastly, we denote by |x| ∈ Z+ ∪ {∞} the length of
a sequence x.

Remark 3.1. Let {yn}n∈N be a sequence in X and
let y ∈ X. Since X is endowed with the product
topology, limn→∞ yn = y if and only if for each
l ∈ N there exists nl such that yn =l y for each
n ≥ nl.

For each subset M of N we denote by X(M) the
subset of X consisting of all sequences of the form

1m10n11m20n2 · · · 0nk−11mk0∞ ,

1m10n11m20n2 · · · 1mk0nk1∞ ,

and

1m10n11m20n2 · · · 1mi0ni · · · ,

where k, m1 ∈ Z+, ni ∈ N for every i, m1 ≤ supM
and mi ∈ M for every i > 1. Note that 0∞, 1∞ ∈
X(M) for each M .

For m ∈ Z+ ∪ {∞} set Em = {1i0∞, 1i0j1∞ :
i, j ≥ 0, i ≤ m}. We note that E∞ =

⋃∞
m=0Em

and Em ⊂ X(M) whenever m ≤ supM .
Let M ⊂ N and let x ∈ X(M). Set

A(x) = {n ∈ N : 1n0n is contained in x} .

Note that, for each x ∈ X(M), A(x) is either finite
or the set of all positive integers. When A(x) = N
we will say that x is an essential point of X(M).
Moreover, X(M) has an essential point if and only
if M is infinite.

The following lemma summarizes some of the
properties of the spaces X(M).

Lemma 3.2. Let M, M ′ ⊂ N. Then

(a) X(M) is compact and τ -invariant. Moreover,
if M 6= N then it is also nowhere dense.

(b) If M ⊂M ′ then X(M) ⊂ X(M ′).
(c) If M is infinite then X(M) is perfect and there

is an essential point xM of X(M) such that
ωτ(xM) = X(M).

(d) If M ∩M ′ = ∅ then X(M)∩X(M ′) = Em with
m = min{supM, supM ′}.

(e) If M ∩M ′ is infinite then X(M) ∩ X(M ′) =
X(M ∩M ′).

Proof. From the definitions it follows that X(M)
is τ -invariant and that statements (b), (d) and (e)
hold. By Remark 3.1, X(M) is closed and, hence,
compact. If M 6= N and x ∈ X(M), then no neigh-
borhood of x is contained in X(M). Consequently,
X(M) is nowhere dense and, hence, the proof of (a)
is complete. Now assume that M is infinite and let
S be the set of all finite sequences of the form

1m10n11m20n2 · · · 1mk0nk ,

where k, ni ∈ N and mi ∈ M . Let {xn}∞n=1 be an
enumeration of S and

xM = x1x2x3 · · · .

Clearly, xM is an essential point in X(M) and
ωτ (xM) = X(M). So, (c) holds. �

Let ϕ : M −→ M ′ be a bijection between two
infinite subsets of N. Then we denote by Φ the map
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from X(M) to X(M ′) such that each point from
X(M) is mapped to a point having the same rep-
resentation (in terms of blocks of zeroes and ones)
but with mi replaced by ϕ(mi) for each i > 1 (here
we use the notation from the definition of the sets
X(M)).

Remark. When M and M ′ are finite Φ need not
map X(M) into X(M ′) since m1 ≤ supM need not
imply m1 ≤ supM ′.

Lemma 3.3. The map Φ is a homeomorphism and
τ ◦ Φ = Φ ◦ τ .

Proof. Clearly, Φ is a bijection and τ ◦ Φ = Φ ◦ τ .
Since X is a second countable space and Φ is a bi-
jection it suffices to show that, for each convergent
sequence {xn}n∈N in X(M),

lim
n→∞

Φ(xn) = Φ( lim
n→∞

xn) .

This is a consequence of Remark 3.1 and so the
proof is complete. �

The next results are devoted to the construc-
tion of points having a prescribed center and depth
(see Proposition 3.10).

For each x ∈ X and n ∈ N, we denote by [x]n
the sequence formed by the first n symbols of x.

Lemma 3.4. Let K ⊂ N, let x be an essential point
of X(K) and let {mi}i∈N be an increasing sequence
of positive integers. Let {ni}i∈N be a sequence of
positive integers such that ni ≥ mi for each i ∈ N.
Then there exist finite sequences x1, x2, . . . such
that

x = x11n10x21n202 · · · xk1nk0k · · · .

Moreover, if we set

u = x11n101m10x21n2021m202 · · ·

xk1
nk0k1mk0kxk+1 · · · ,

then u is an essential point of X(K ∪{mi}i∈N) and

ωτ (u) = ωτ(x). (1)

Proof. The existence of the sequences x1, x2, . . . is
a direct consequence of the fact that x is essential.
Clearly, u ∈ X(K ∪ {mi}i∈N) and, since x is es-
sential, u is also essential. Now, let us prove (1).

We start by showing that ωτ (u) ⊃ ωτ(x). Take
z ∈ ωτ (x). By Remark 3.1, for each l ∈ N, there
exists an unbounded set Sl ⊂ N such that for each
i ∈ Sl, [z]l is contained in 0lxi1

ni0l. Therefore,
there exists a strictly increasing sequence {j′l}∞l=1

such that for each l ∈ N, τ j
′
l(u) starts with 0lxi1

ni0l,
where i ∈ Sl. Thus, there exists a sequence {jl}∞l=1
such that j′l ≤ jl and τ jl(u) =l z for each l ∈ N.
Consequently, z ∈ ωτ (u).

Now we prove the other inclusion. Let z ∈
ωτ (u) and let T be the set of all l ∈ N such that [z]l
is contained in 0lxi1

ni0l for some i. If T is infinite
then one can construct a sequence {kl}∞l=1 tending
to infinity, such that τkl(x) =l z for each l ∈ N.
Consequently, z ∈ ωτ(x). If T is finite then, by
Remark 3.1, there exists L ∈ N such that [z]l is
contained in 0l1mi0l for each i, l > L. Hence, ei-
ther z ∈ {0i1∞}i∈Z+ or z ∈ {1i0∞}i∈Z+ . Since x is
essential, {0i1∞}i∈Z+ ∪ {1i0∞}i∈Z+ ⊂ ωτ(x). �

Lemma 3.5. Let M ⊂ N and let u be an essential
point of X(M). For any n ∈ N, let un be a finite
sequence ending with 1n0n such that u begins with
un. Let

y = u1u2 · · ·un · · · .

Then

ωτ (y) = {0iu}i∈N ∪ {τ i(u)}i∈Z+ ∪ ωτ(u) (2)

Proof. For each n ∈ N, define yn = unun+1 · · · and

fix k ∈ Z+. Note that for each n > k there ex-
ists ln ∈ N such that 0kyn = τ ln(y). Moreover,
we can assume that ln < ln+1. So, by Remark 3.1,
limn→∞ 0kyn = 0ku. Hence, 0ku ∈ ωτ (y) and thus,

{0iu}i∈N ∪ {τ i(u)}i∈Z+ ∪ ωτ (u) ⊂ ωτ (y) .

To prove that the other inclusion holds, fix a
z ∈ ωτ (y). By Remark 3.1, there exists a sequence
{ln}∞n=0 tending to infinity such that [z]n is con-
tained in 0nu

ln
. So, [z]n is contained in 0nuk for

any k ≥ ln. Thus, for each n ∈ N and k ≥ ln, ei-
ther [z]n is contained in uk or [z]n =n 0iuk, where

0 < i ≤ n. In any case, z ∈ {0iu : i > 0} ∪ {τ i(u) :
i ≥ 0} ∪ ωτ (u). This completes the proof of the
lemma. �

Lemma 3.6. Let K ⊂ N, let x be an essential
point of X(K) and let {mi}i∈N be an increasing se-
quence in N\K. Then there is an essential point



1724 Ll. Alsedà et al.

y ∈ X(K ∪ {mi}i∈N) such that ωτ(y) ∩ X(K) =

ωτ (x) = W 1
τ (y) and dτ (y) = 1 + dτ (x).

Proof. By Lemma 3.4 there exists an essential
point u ∈ X(K ∪ {mi}i∈N) such that ωτ (u) =
ωτ (x) ⊂ X(K). Now let y ∈ X(K ∪ {mi}i∈N) be
the point given by Lemma 3.5. By (2) and (1),

ωτ(y) = {0iu}i∈N ∪ {τ i(u)}i∈Z+ ∪ ωτ (x)

Since u contains all sequences of the form 01mi0
with mi /∈ K, ωτ (y)∩X(K) = ωτ (x). On the other
hand, by (1),

W 1
τ (y) = ωτ (u) ∪W 1

τ (x) = ωτ (x) 6= W 0
τ (y) .

Hence, by Lemma 2.4, dτ (y) = 1 + dτ (u). �

Lemma 3.7. Let α be a countable ordinal. Assume
that M and K are disjoint infinite sets of positive
integers. Let u ∈ X(K) and, for each β < α, let
xβ ∈ X(M ∪K) be such that

ωτ (xβ) ∩X(K) = ωτ (u) , (3)

W β
τ (xβ) = ωτ (u) and dτ (xβ) = β + dτ (u) . (4)

Then, for each β < α, there is a point uβ ∈
X(M ∪K) such that

ωτ (uβ) ∩X(K) = ωτ(u) , (5)

ωτ (uβ) ∩ ωτ (uβ′) = ωτ (u) (6)

for β′ < α and β 6= β′,

W β
τ (uβ) = ωτ (u) and dτ (uβ) = β + dτ (u) . (7)

Proof. Let {Mβ}β<α be a transfinite sequence of
pairwise disjoint infinite subsets of M . For each
ordinal β < α, let ϕβ : M ∪K −→ Mβ ∪ K
be a bijection such that ϕβ|K is the identity and
let Φβ : X(M ∪K) −→ X(Mβ ∪ K) be the as-
sociated homeomorphism (cf. Lemma 3.3). Note
that Φβ|X(K) is the identity. For β < α, define
uβ = Φβ(xβ). Then, (5) is a consequence of (3)

and Lemma 2.1. Since ωτ (uβ) ⊂ X(Mβ ∪K), (6)

follows from Lemma 3.2(e) and (5). Finally, since
Φβ is a homeomorphism, (7) follows from (4) and
Corollary 2.2(a) and (c). �

Lemma 3.8. Let α be a countable limit ordinal and
let M and K be disjoint infinite sets of positive in-
tegers. Let u be an essential point of X(K) and,

for each β < α, let uβ be an essential point of

X(M ∪K) such that (5 ) and (7 ) hold. Then there
is an essential point zα in X(M ∪ K) such that
ωτ (zα) ∩ X(K) = ωτ (u) = Wα

τ (zα) and dτ (zα) =
α+ dτ (u).

Proof. By Lemma 3.7 we may also assume that (6)
is satisfied for each distinct β, β′ < α. For any
0 < β < α and any n ∈ N, let unβ be a (finite) se-

quence ending with n consecutive zeroes such that
uβ begins with unβ. Let {β(k)}∞k=1 be a sequence

of ordinals smaller than α containing any ordinal
0 < β < α infinitely many times. Define

zα = u1
β(1)u

2
β(2)u

3
β(3) · · · unβ(n) · · · .

Clearly, zα is an essential point of X(M∪K). Then,
by an argument similar to that used in the proof of
Lemma 3.5, we obtain

W 0
τ (zα) = ωτ (zα)

=
⋃

0<β<α

ωτ (uβ)

∪
⋃

0<β<α

{0kuβ : k > 0}

∪
⋃

0<β<α

{τk(uβ) : k ≥ 0} .

(8)

Hence,

W 1
τ (zα) =

⋃
0<β<α

ωτ (uβ) =
⋃

0<β<α

W 0
τ (uβ)

and, by induction on n,

Wn+1
τ (zα) =

⋃
0<β<α

Wn
τ (uβ) (9)

for any n ∈ Z+. Denote by ω the first infinite ordi-
nal. By using the definition of Wω

τ (·), (9), (6), (7)
and again the definition of Wω

τ (·) we obtain

Wω
τ (zα) =

∞⋂
n=0

Wn+1
τ (zα)

=
∞⋂
n=0

 ⋃
0<β<α

Wn
τ (uβ)


=

⋃
0<β<α

( ∞⋂
n=0

Wn
τ (uβ)

)

=
⋃

0<β<α

Wω
τ (uβ) .

(10)
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By (6), (7), (10) and transfinite induction beginning
with γ = ω, we obtain

W γ
τ (zα) =

⋃
0<β<α

W γ
τ (uβ) (11)

whenever ω ≤ γ ≤ α. By (7), W γ
τ (uβ) ⊃ ωτ (u) for

γ ≤ β < α. Hence, by (11), W γ
τ (zα) ⊃ ωτ (u) and,

consequently, Wα
τ (zα) ⊃ ωτ (u). On the other hand,

by (7), W γ
τ (uβ) ⊂ ωτ (u) whenever 0 < β ≤ γ < α.

Therefore, (11) and (7) yield

W γ
τ (zα) =

⋃
γ≤β<α

W γ
τ (uβ) ⊂

⋃
γ≤β<α

ωτ (uβ) . (12)

Thus, by (6),

Wα
τ (zα) ⊂

⋂
γ<α

 ⋃
γ≤β<α

ωτ (uβ)

 = ωτ(u)

and, hence, Wα
τ (zα) = ωτ (u).

Now we claim that dτ (zα) ≥ α. To prove this
it suffices to show that W γ

τ (zα) 6= Wα
τ (zα) for each

γ < α. For each γ < α, choose βγ such that

γ < βγ < α. Then, by (7), W γ
τ (uβγ ) !W βγ

τ (uβγ ) =

ωτ (u). Consequently, if α > ω, by (12) we have

W γ
τ (zα) =

⋃
γ≤β<ω

W γ
τ (uβ) ⊃W γ

τ (uβγ )

! ωτ (u) = Wα
τ (zα) .

If α = ω then the claim follows in a similar way
by (9) and (7). Therefore, since Wα

τ (zα) = ωτ(u)
and dτ (zα) ≥ α, by Lemma 2.4 we obtain dτ (zα) =
α+ dτ (u).

Now, we prove that ωτ(zα) ∩ X(K) = ωτ (u).
In view of (5), (8) and Lemma 3.2(a), it is enough
to show that

{0kuβ : k > 0} ∩X(K) =

{τk(uβ) : k ≥ 0} ∩X(K) = ∅

for any k ∈ Z+ and 0 < β < α. Otherwise,
τk(uβ) ∈ X(K) or 0kuβ ∈ X(K) which imply

ωτ (uβ) ⊂ X(K) and, by (5), W 0
τ (uβ) = ωτ(uβ) =

ωτ (u) which contradicts (7). This ends the proof of
the lemma. �

Lamma 3.9. Let M and K be disjoint infinite
sets of positive integers, let α be a countable ordinal
and let xK be an essential point of X(K). Then

there is an essential point zα from X(M ∪K) such
that

ωτ (zα) ∩X(K) = ωτ (xK) = Wα
τ (zα)

and dτ (zα) = α+ dτ (xK).

Proof. We prove the proposition by transfinite in-
duction. If α = 0, the lemma holds by taking
z0 = xK. Now fix a countable ordinal α and as-
sume that for any β < α, any pair of disjoint in-
finite sets of positive integers M ′ and K ′ and any
essential point xK′ ∈ X(K ′), there exists zβ(xK′)
such that the lemma holds with xK, and α and zα
replaced by xK′ , β and zβ(xK′), respectively.

Assume now that α = β+ 1 for some countable
ordinal β. Let M ′ be a proper infinite subset of
M such that M \M ′ is infinite and let {mi}i∈N be
an increasing sequence in M \M ′. Then, let y be
the essential point from X(K ∪ {mi}i∈N) given by
Lemma 3.6 with x replaced by xK. By the induc-
tion hypothesis, there exists zβ(y) ∈ X(M ′ ∪K ∪
{mi}i∈N) such that

ωτ (zβ(y)) ∩X(K ∪ {mi}i∈N) = ωτ(y)

= W β
τ (zβ(y))

and dτ (zβ(y)) = β+dτ (y). Put zα = zβ(y). Then,

by Lemmas 3.6 and 3.2(b),

ωτ (zα) ∩X(K) = ωτ(y) ∩X(K) = ωτ (xK)

and

dτ (zα) = dτ (zβ(y)) = β + dτ (y)

= β + 1 + dτ (xK) = α+ dτ (xK) .

Moreover,

Wα
τ (zα) = W β+1

τ (zα) =
⋃

t∈Wβ
τ (zβ(y))

ωτ (t)

=
⋃

t∈ωτ (y)

ωτ (t) = W 1
τ (y) = ωτ (xK) .

If α is a countable limit ordinal, then the state-
ment follows immediately from Lemma 3.8 and the
induction hypotheses with M ′ = M , K ′ = K and
xK′ = xK. �

Proposition 3.10. Let M and K be disjoint
infinite sets of positive integers. Then, for any
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countable ordinal α there exists xα ∈ X(M ∪ K)
such that Cτ (xα) = X(K) and dτ (xα) = α.

Proof. In view of Lemma 3.2(c) there exists an
essential point xK in X(K) such that ωτ (xK) =
X(K). Let zα be the point given by Lemma 3.9.
We note that Cτ (xK) = X(K) and dτ (xK) = 0.
Hence, dτ (zα) = α and ωτ (zα)∩X(K) = ωτ (xK) =
Wα
τ (zα). So, Cτ (zα) = Wα

τ (zα) = ωτ(xK) = X(K).
�

Theorem 3.11. There exists a family {Xt}t∈[0, 1]

of nowhere dense perfect subsets of X such that

(a) Xt ⊂ Xs and Xt 6= Xs if t < s.
(b) For any t ∈ [0, 1] there exists xt ∈ Xt such that

ωτ(xt) = Xt.
(c) For any t < s in [0, 1] and any countable ordi-

nal α there exists ys ∈ Xs such that dτ (ys) = α
and Cτ (ys) = Xt.

Proof. Let Q be the set of rational numbers in
[0, 1], and let {Mt}t∈Q be a family of mutually dis-
joint infinite sets of positive integers. For t ∈ [0, 1]
define Xt = X(∪r<tMr). Then the theorem follows
from Lemma 3.2(a)–(c) and Proposition 3.10. �

4. Proof of Theorem A

It is well known (see for instance Corollary 16 of
Chapter II of [Block & Coppel, 1992]) that for any
continuous interval map with positive topological
entropy there exists a compact invariant set B such
that an iterate of the map restricted to B is semi-
conjugate to a full shift with two elements (com-
pare also with [Young, 1981, Theorem 2.4]). In or-
der to prove Theorem A we need a stronger result:
two iterates of B by the map either coincide or are
pairwise disjoint. This is proved in Proposition 4.4.
More precisely, this proposition shows that any con-
tinuous interval map with positive topological en-
tropy contains as a subsystem a compact invariant
subset Σ of a subshift of finite type (S, σ|S) such
that, for some r ∈ N and Σ∗ ⊂ S,

(a) Σ =
⋃r−1
i=0 τ

i(Σ∗),
(b) the sets τ i(Σ∗) and τ j(Σ∗) are disjoint if and

only if i /≡ j modulo r, and
(c) τ r|Σ∗ is conjugate to a full shift with two

elements.

We start with some notions and preliminary re-
sults. A set of closed subintervals of I with pairwise

disjoint interiors will be called a basic system. Let
A be a basic system. Any bijective map from the
set {1, 2, . . . , CardA} to A will be called a coding
of A. Consider a triple (A, κ, f) where A is a basic
system, κ is a coding of A and f ∈ C(I, I). To such
a triple we can associate a subshift of finite type
of order 2, denoted by Λ(A, κ, f), as follows (here,
when speaking about subshifts of finite type, we will
use the notation and definitions from [Denker et al.,
1976]). The alphabet of the subshift will be the set
{1, 2, . . . , CardA} and the transition matrix is de-
fined to be the (CardA)×(CardA) matrix T = (tij)
defined by tij = 1 if f(κ(i)) ⊃ κ(j) and tij = 0
otherwise. Any (n + 1)-block a = (a0, a1, . . . , an)
occurring in such a subshift of finite type is called
a loop if an = a0. The number n is called the length
of the loop and is denoted by |a|. We will say that
a loop is elementary if ai 6= aj whenever i 6= j for
0 ≤ i, j < n.

Let a = (a0, a1, . . .) be either a block occur-
ring in Λ(A, κ, f) or an element from Λ(A, κ, f).
Given a point z ∈ I we say that it f -follows a
if f i(z) ∈ κ(ai) for each i ≥ 0. It is easy to
see that, since f is continuous and I is compact
there exists at least one point in I which f -follows
a. This elementary fact is known as the Itinerary
Lemma.

Let f ∈ C(I, I) and let P be a periodic orbit of
f . We will denote by 〈P 〉 the convex hull of P (that
is, the smallest closed connected set containing P ).
The closure of each connected component of 〈P 〉\P
is called a P -basic interval. We say that the map
f is P -monotone if it is monotone on the closure of
each connected component of I\P .

Given a map f ∈ C(I, I) and a periodic orbit P
of f we define an auxiliary map fP as follows. For
each x ∈ 〈P 〉 denote by x− and x+ the two points
from P such that 〈x−, x+〉 is a P -basic interval,
x ∈ 〈x−, x+〉 and f(x−) < f(x+). (Here 〈x−, x+〉
stands for 〈{x−, x+}〉; note that f(x−) 6= f(x+)
since P is a periodic orbit.) Then we define fP as
the map from C(I, I) such that it is constant on
each connected component of I\〈P 〉 and fP (x) =
min{f(x+), maxz∈〈x−, x〉 f(z)} for each x ∈ 〈P 〉.
Note that fP is P -monotone and fP |P = f |P .

Now we start to develop the tools to prove The-
orem A. Let f ∈ C(I, I) be with positive topological
entropy. By Theorem 4.4.10 and Corollary 4.4.7 of
[Alsedà et al., 1993], it follows that f has a periodic
orbit P such that h(fP ), the topological entropy of
fP , is positive. In the rest of this section we will
assume that f and P are fixed.
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Let A be the set of all P -basic intervals of fP ,
let κ∗ be a coding of A and let M = (mij) denote
the transition matrix of Λ(A, κ∗, fP ). By changing
κ∗ (if necessary) the matrix M can be written in
block form as:

M =



M1 0 0 0

∗ M2 0 0

∗ ∗ . . . 0

∗ ∗ ∗ Ml

 ,

where each block Mi is a square matrix which is ei-
ther irreducible or zero [Gantmacher, 1959] (recall
that a non-negative square matrix L is called irre-
ducible if, for each entry of L, there exists l ∈ N
such that the corresponding entry of Ll is positive).

Since h(fP ) > 0, from [Alsedà et al., 1993,
Theorem 4.4.5] it follows that the spectral radius
of M is larger than one. So, there exists a block
T = Mi ofM having spectral radius larger than one.
Hence, T is an irreducible matrix which is not a per-
mutation matrix. Let U = {j ∈ N : mjj belong to
the block matrixMi} and let κ be a coding of κ∗(U).
In what follows we will denote Λ(κ∗(U), κ, fP )
by S. Note that the transition matrix of S is
precisely T .

The irreducibility of T implies that S has a
loop a. Without loss of generality we can assume
that a = (a0, a1, . . . , at−1, a0) has minimal length.
Clearly, it is elementary. Therefore, the fact that
T is not a permutation matrix implies that there
is a symbol k in the alphabet of S which does
not lie in a. Also, there is a loop from a0 to a0

through k. Thus, there is a loop in S contain-
ing a symbol from a and a symbol which does
not lie in a. Let b be a loop of minimal length
having these properties. Denote by l a common
symbol of a and b. Without loss of generality we
may assume that a = (a0, a1, . . . , a|a|−1, a0) and
b = (b0, b1, . . . , b|b|−1, b0) with a0 = b0 = l and
a1 6= b1. Note that, by the minimality of a and b, l
appears only at the beginning and at the end of a
and b, and |b| ≥ |a|.

Let Σ∗ denote the space of all elements from
S which can be obtained by concatenating the
loops a3b2 and a2bab and let Σ denote ∪∞n=0σ

n(Σ∗).
Set r = |a3b2|. Since σr(Σ∗) = Σ∗, we have
Σ = ∪r−1

n=0σ
n(Σ∗). Note that both Σ∗ and Σ are

compact.
Our next objective is to show that Theo-

rem 3.11 holds with X replaced by Σ and τ by σ|Σ.

To this end we consider the map ψ : X −→ Σ∗ de-
fined in the following way. For each x = {xi}∞i=0 ∈
X we define ψ(x) = d0d1 · · · ∈ Σ∗ where

di =

{
a3b2 if xi = 0 ,

a2bab if xi = 1 ,

for each i ∈ Z+. It is not difficult to prove that ψ
is a homeomorphism and that the diagram

X
τ−−−−→ X

ψ

y ψ

y
Σ∗

σr−−−−→ Σ∗

commutes. Therefore, by Corollary 2.2(c), Theo-
rem 3.11 holds with X replaced by Σ∗ and τ by
σr.

Lemma 4.1. Let i, j ∈ Z+. Then

σi(Σ∗) ∩ σj(Σ∗) = ∅

if and only if i /≡ j modulo r.

Proof. Suppose that d ∈ σi(Σ∗) ∩ σj(Σ∗). Since
σr(Σ∗) = Σ∗ we may assume that 0 ≤ i < j < r.
Then, defining k = j − i, we obtain

σr−i(d) ∈ σr(Σ∗) ∩ σr+j−i(Σ∗) = Σ∗ ∩ σk(Σ∗)

where 0 < k < r. Hence σr−i(d) ∈ σk(Σ∗) must be-
gin either with a3b2 or with a2bab, which is impos-
sible when 0 < k < r because a and b are different.
The other implication is easy. �

Now, since Theorem 3.11 holds with X replaced
by Σ∗ and τ by σr|Σ∗ , by Lemma 4.1 and Proposi-
tion 2.3 we obtain the following.

Propositon 4.2. Theorem 3.11 holds with X and
τ replaced by Σ and σ|Σ, respectively.

Before stating and proving Propositon 4.4 we
need another technical lemma.

Lemma 4.3. Assume that g ∈ C(I, I) is a P -
monotone map such that g|P = f |P and d ∈ S is
g-followed by a point of P . Then d /∈ Σ.

Proof. Assume that there exist x ∈ P and d ∈ Σ
such that d is g-followed by x. Without loss of
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generality we may assume that d begins with a2b
(otherwise we replace x and d by gn(x) and σn(d)
for a suitable n). Then, clearly, x is an extremal
point of κ(l). Since g|a|(x) ∈ κ(l), g|a|(x) must be
the other extremal point of κ(l) because the period
of P is strictly greater than |a|. This implies that
g|a|(x) 6= x and thus, since g2|a|(x) also belongs to
κ(l), we have g2|a|(x) = x.

Recall that we have a = (l, a1, a2, . . .) and
b = (l, b1, b2, . . .) with a1 6= b1. Then g(x) ∈ κ(a1)
and g(x) = g2|a|+1(x) ∈ κ(b1). Hence, g(x) is a
common endpoint of two nonoverlapping intervals
κ(a1) and κ(b1). On the other hand g is mono-
tone on κ(l), x ∈ κ(l) is an endpoint of κ(l) and
g(κ(l)) ⊃ κ(a1) ∪ κ(b1) — a contradiction. �

Proposition 4.4. Let f ∈ C(I, I) be a map with
positive topological entropy and let Σ and σ be de-
fined as above. Then there exists a compact set
B ⊂ I and a continuous map ϕ : B −→ Σ which
is onto and one to one except for a countable set
where it is two to one such that f(B) = B and
σ ◦ ϕ|B = ϕ ◦ f |B.

Proof. For each d = (d0, d1, . . .) ∈ Σ set Id =

∩∞i=0 f
−i
P (κ(di)); that is, Id is defined to be the set

of points which fP -follow d. Then we set

B =
⋃

d∈Σ

Bd(Id) .

We claim that

(a) Each Id is a (possibly degenerate) closed subin-
terval of 〈P 〉.

(b) B ∩ P = ∅.
(c) fP (B) = B.
(d) Each point in B fP -follows a unique sequence

from Σ.
(e) The sets Id, for d ∈ Σ, are pairwise disjoint.

To prove the claim note that since fP is P -
monotone, (a) follows from the Itinerary Lemma.
Statement (b) is a consequence of Lemma 4.3. Now
observe that if x ∈ Id then fP (x) ∈ Iσ(d). Hence,
(c) follows from the fact that fP is P -monotone.
Therefore, (d) and (e) can be obtained immediately
from (b). This ends the proof of the claim.

Now we will construct the map ϕ. For each
x ∈ B, we set ϕ(x) = d if and only if x ∈ Id. By
(d), ϕ is well defined and, clearly, is continuous.
Then, the fact that ϕ is onto and one to one except
for a countable set where it is two to one can be
proved by using (a) and (e).

The next step will be to prove that B is com-
pact. First we will prove that the set

H =
⋃

d∈Σ

Id

is compact. To do it, for each n ∈ Z+, de-
note by Σn the set of finite sequences of the form
(d0, d1, . . . , dn) for which there exists d ∈ Σ which
starts with (d0, d1, . . . , dn). Clearly, each of the
sets Σn is finite. For each a = (a0, a1, . . . , an) ∈ Σn

we denote by Ina the set ∩ni=0f
−i
P (κ(ai)), which is a

compact subset of I. Then, we have

H =
∞⋂
n=0

 ⋃
a∈Σn

Ina

 ,

which is clearly compact.
The continuity of fP and (e) of the above claim

imply that between two different sets Id there is a
preimage of a point from P and, by Lemma 4.3,
this point does not belong to H. Therefore, it is
not difficult to see that for each x ∈ B there exists
a sequence contained in the complement of H which
converges to x. Consequently, by the compacity of
H, B ⊂ Bd(H). Thus, clearly, B = Bd(H) and,
hence, it is compact.

To prove that f(B) = B assume that there ex-
ists x ∈ B such that fP (x) 6= f(x) then, by the
definition of fP , there is an open interval U con-
taining x such that fP is constant on U . Let d be
such that x ∈ Bd(Id). Clearly, U ∪ Id ! Id and
all points in U ∪ Id fP -follow d — a contradiction.
Thus, from (c) it follows that f(B) = B.

To end the proof of the lemma notice that

σ ◦ ϕ|B = ϕ ◦ fP |B = ϕ ◦ f |B . �

Proof of Theorem A. At the end of Sec. 1 we have al-
ready seen that Conditions (a)–(c) imply h(f) > 0.
So we assume that h(f) > 0 and we prove (a)–(c).
Let {Xt}t∈[0, 1] be the sets given by Theorem 3.11
with X and τ replaced by Σ and σ, respectively
(see Proposition 4.2) and let ϕ be the map given by
Proposition 4.4. Clearly, ϕ−1(Xt) ⊂ B is compact
for each t ∈ [0, 1].

Now we state the following two elementary facts
which are valid in any second countable topological
space:

(i) Any closed set has a unique decomposition into
a perfect set and a countable set (cf. Cantor–
Bendixson Theorem).
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(ii) The difference A \ B of any perfect set A and
any closed set B is either empty or uncountable
(by a perfect set we understand here a closed
set, locally uncountable at any point).

Thus, from (i) it follows that there is a countable
set Rt such that ωt = ϕ−1(Xt) \ Rt is perfect and,
since Xt is uncountable, nonempty. Since ϕ is con-
tinuous, ϕ(ωt) ⊂ Xt is compact. On the other
hand, Xt \ ϕ(ωt) ⊂ ϕ(Rt) is a countable set. So,
ϕ(ωt) = Xt by (ii).

Now we claim that f(ωt) ⊂ ωt. Indeed, Xt is
σ-invariant, hence, by Proposition 4.4 ϕ−1(Xt) is
f -invariant. Therefore,

f(ωt) \ ωt ⊂ ϕ−1(Xt) \ ωt ⊂ Rt

and so f(ωt)\ωt is countable. Note that σ is at most
two-to-one on Xt. Hence, Proposition 4.4 implies
that f is at most four-to-one on ωt. Consequently,
f(ωt) is perfect and the claim follows from (ii).

By Proposition 4.2, there exists zt ∈ Xt such
that Xt = ωσ(zt). So, there exists xt ∈ ωt∩ϕ−1(zt).
By the above claim, ωf (xt) ⊂ f(ωt) ⊂ ωt. By
Lemma 2.1 and Proposition 4.4,

ϕ(ωf (xt)) = ωσ(ϕ(xt)) = ωσ(zt) = Xt .

So, since ϕ(ωt \ ωf (xt)) ⊂ Xt, ωt \ ωf (xt) is
countable by Proposition 4.4. Thus, ωf (xt) = ωt
by (ii). Therefore, we have proved statement (a)
and ωt  ωs for any t < s. Now, take x ∈ I such
that ωf (x) is maximal with respect to the inclu-
sion relation containing some ωt. Since any two
distinct maximal ω-limit sets of points for any con-
tinuous map of the interval have finite intersection
(cf., e.g. [Schweizer et al., 1994]), ωs ⊂ ωf (x) for
any s ∈ I. This ends the proof of (b). Finally,
(c) follows from Proposition 4.2, Corollary 2.2 and
Proposition 4.4. �
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