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80 THE MATHEMATICAL GAZETTE

82.6 A generalisation of Euler's theorem

One of the celebrated results in number theory is Euler's theorem:

If m is a positive integer and a any integer with (a, m) = 1, then
a®™ = 1 (mod m), where (a, m) denotes the gcd of a and m. This result
can be generalised to a finite number of positive integers m;, as the next
theorem shows, where [a, ] denotes the lcm of the positive integers a and b.

Its proof employs the fact that if a = b (modm;), where 1 < i < k,
thena = b (mod[my, my, ..., my]). For example, 293 = 113 (mod 6) and
293 =113 (mod 9), s0 293 = 113 (mod [6, 9]), that is, 293 = 113 (mod 18).

Theorem Let my, my, ..., m; be any positive integers and a any integer
such that (a, m;) = 1for1 < i < k. Then

QB Xl = (mod [my, my, ... , m]).

Proof: Let M, = [(D(m,),CI)(mz), ,(I>(mk)]. By Euler's theorem,

a®™ = 1 (modm;) for every integer i, where 1 < i < k. Since
b (m;) IM 1 it follows that M,/ ® (m;) is a positive integer, and
d" = [ao('""]Mk/d)(mi) = M%) = 1 (modm;).

By the above result, this yields the desired conclusion, a =1
(mod [ml, my, ..., mk])

It is worth noting that Phythian's extension [1] of Fermat's Little
Theorem follows from the above theorem when each m; is a distinct prime.

Reference

= J. E. Phythian, Divisors using Fermat's theorem, Math. Gaz. 54 (Dec.
1970) pp. 402-404.

THOMAS KOSHY
Framingham State College, Framingham, MA 01701-9101, USA

82.7 Equal sums of squares
Two squares

If you want to find all integer solutions of the equation 6p + 15¢ = 0,
you first divide by 3 to get 2p + 5S¢ = O and then, since 2 and 5 are
coprime, you can argue that p is an integer multiple of 5 and g the same
multiple of 2 but of opposite sign. The resultisp = Snandg = -2n. The
argument fails unless you first remove the highest common factor of 6 and
15.

This leads naturally to the following procedure. To find all solutions in
integers of the equation

ap + bg = 0 (1
you work out m = (a, b),seta = mf,b = mg so that (1) becomes

fp+gq =0, 2
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