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Selling Primes

PAULO RIBENBOIM*

Queen’s University
Kingston, Ontario, Canada, K7L 3N6

I am a big shot in a factory that produces primes.
And I will tell you an interesting dialogue with a buyer, coming from an exotic
country.

The Dialogue

—Buyer: I wish to buy some primes. ,

—1I (generously): I can give to you, free of charge, many primes: 2, 3, 5, 7, 11, 13,
17, 19,....

—Buyer (interrupting my generous offer): Thank you, sir; but I want primes with
100 digits. Do you have these for sale?

—1I: In this factory we can produce primes as large as you wish. There is in fact an
old method of Euclid, which you may have heard about. If I have any number n of
primes, say p;, Ps,-- -, P,» we multiply them and add 1, to get the number N =p, p,
-++ p,+ 1. Either N is a prime or, if it is not a prime, we pick any prime dividing N.
In this way, it is easy to see that we get a prime, which is different from the ones we
mixed. Call it p, . If we now mix p;, py,..., D, Pn+1 as I already said, we get still
another prime p, , ,. Repeating this procedure we get as many primes as we wish and
50, we are bound to get primes as large as we wish, for sure with at least 100 digits.

—Buyer: You are very nice to explain your procedure. Even in my distant country,
I have heard about it. It gives primes that may be arbitrarily large. However, I want
to buy primes that have exactly 100 digits, no more, no less. Do you have them?

—1I: Yes. Long ago—at the beginning of last century—Bertrand observed that
between any number N > 1 and its double 2N, there exists at least one prime
number. This experimental observation was confirmed by a rigorous proof by
Chebyshev. So I can find the primes p,, p,, p; where

10% <p, <2 X 10%
2% 10% <p, <4x10%
4% 10% <p, <8X10%.

—Buyer: This means that you have guaranteed 3 primes with 100 digits, and
perhaps a few more. But I want to buy many primes with 100 digits. How many can
you produce?

—1I: I have never counted how many primes of 100 digits could eventually be
produced. I have been told that my colleagues in other factories have counted the
total number of primes up to 10'7. We usually write 7(N) to denote the number of
primes up to the number N. Thus, the count I mentioned has given:

m(10%) = 5,761,455
m(10°) = 50,847,534

*Lecture at the University of Augsburg, June 23, 1992.
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77(10‘2) = 37,607,912,018
11-(10‘7) = 2,625,557,157,654,233.

Even though all primes up to 10'7 have not yet been produced by any factory, the
count of 7(10'7) is exact.

—Buyer (a bit astonished). If you cannot—as I understand—know how many
primes of each large size there are in stock, how can you operate your factory and
guarantee delivery of the merchandise?

—1I: Your country sells oil, does it not? You can estimate the amount of oil at
shallow depths quite accurately, but you cannot measure exactly the entire amount
underground. It is just the same with us.

Gauss, one of the foremost scientists, discovered that

N
TN~ TogN
for large values of N. This was confirmed, almost a century ago, by a proof given by
Hadamard and de la Vallée Poussin.

—Buyer: Do you mean that (N) is approximately equal to N/ log N, with a small
error?

—1I: Yes. To be more precise, the relative error, namely the absolute value of the
difference |m(N) — N/ log N|, divided by m(N), tends to 0, as N increases indefi-
nitely.

—Buyer: Then, because of the error, you cannot be very specific in your estimate.
Unless you estimate the error.

—1I: Correct (the buyer is not stupid...). Chebyshev showed, even before the
prime number theorem was proved, that if N is large, then

N N
O'glog—N <1T(N) < l.llog—N.

To count primes with 100 digits:

1099 9 1099
0955Tog10 < ™(107) < Llgg7eT0
10100 100 1010()
0.9 150Tog10 <™ (10™) < L1y5676570

It is easy to estimate the difference 7(10'") — 7(10%), which gives the number of
primes with exactly 100 digits:

3.42 X 10 < (10'") — 7 (10%°) < 4.38 X 10",

—Buyer: You are rich! I think you have more primes than we have oil. But I
wonder how your factory produces the primes with 100 digits. I have an idea but I'm
not sure how efficient my method would be.

1°) Write all the numbers with 100 digits.

2°) Cross out, in succession, all the multiples of 2, of 3, of 5,..., of each prime p less
than 10%°. For this purpose, spot the first multiple of p, then cross out every pth
number.

What remains are the primes between 10%° and 10'%, that is, the primes with
exactly 100 digits.
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—1I: This procedure is correct and was already discovered by Eratosthenes (in the
3rd century B.C.). In fact, you may stop when you have crossed out the multiples of
all the primes less than 10°°.

However, this method of production is too slow. This explains why the archeolo-
gists never found a factory of primes amongst the Greek ruins, but just temples to
Apollo, statues of Aphrodite (known as Venus, since the time of Romans), and other
ugly remains, which bear witness to a high degree of decadence.

Even with computers this process is too slow to be practical. Think of a computer
that writes 10° digits per second.

« There are 10'% — 10% = 10% X 9 numbers with 100 digits.

« These numbers have a total of 10! X 9 digits.

« One needs 10%° X9 seconds to write these numbers, that is about 1.5 X 10%
minutes, that is about 25 X 10%2 hours, so more than 10°! days, that is of the order
of 3 X 10% years, that is 3 X 10% centuries!

And after writing the numbers (if there is still an After...) there is much more to be
done!

Before the buyer complained, I added:

—1I: There are shortcuts, but even then the method would still be too slow. So,
instead of trying to list the primes with 100 digits, our factory uses fast algorithms to
produce enough primes to cover our orders.

—Buyer: I am amazed. I never thought how important it is to have a fast method.
Can you tell me the procedure used in your factory? I am really curious. [Yes, this
buyer was being too nosy. Now I became convinced that he was a spy.]

—1I: When you buy a Mercedes, you don’t ask how it was built. You choose your
favorite color, pink, purple, or green with orange dots, you drive it and you are happy,
because everyone else is envious of you.

Our factory will deliver the primes you ordered and we do better than Mercedes.
We support our product with a lifetime guarantee. Goodbye, sir.

[He may have understood: Good buy, sir...]

After the Dialogue

I hope that after the dialogue with the spy-buyer, you became curious to know about
our fast procedure to produce large primes. I shall tell you some of our most
cherished secrets. In our factory there are two main divisions.

1) Production of primes.

2) Quality control.

Production of Primes

One of the bases of our production methods was discovered long ago by Pocklington
[4]. T will state and prove his theorem, in the particular situation adapted to our
production requirements. Then, I shall discuss how it may be used to obtain, in a
surprisingly short time, primes with the required number of digits.

CRITERION OF PockLINGTON. Let p be an odd prime, let k be a natural number
such that p does not divide k and 1 <k <2(p + 1); and let N =2kp + 1. Then the
following conditions are equivalent:
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1) N is a prime.
2) There exists a natural number a, 2 < a < N, such that

a*” = —1(mod N)
and

ged(a*+1,N) =1.

Proof. 1 = 2. Assume that N is a prime. As it is known, there is some integer «,
1 <a <N, such that ¢V ! = 1(mod N), but ¢” # I(mod N) if 1 <m <N —1; such a
number a is called a primitive root modulo N. Thus a?*? = 1(mod N), but a*? #
1(mod N); then a*” = — 1(mod N). Also a* # — 1(mod N) otherwise a** = 1(mod N),
which is not true; so ged(a* +1, N) = 1.

2 = 1. In order to show that N is a prime, we shall prove: If ¢ is any prime
dividing N, then YN < g. It follows that N cannot have two (equal or distinct) prime
factors, so N is a prime.

So, let g be any prime factor of N. Then a*” = —1(mod ¢) and «* = 1(mod q).
Hence ged(a, g) = 1. Let e be the order of ¢ modulo g, hence e divides g — 1, by
Fermat's little theorem. Similarly, e divides 2kp = N — 1, because ?*” = 1(mod g).
Note that a* # 1(mod ¢), otherwise a*” = 1(mod ¢); from a*” = —1(mod q), it fol-
lows that ¢ =2 and N would be even, which is false.

From ged(a* + 1, N) = 1, it follows that a* # — 1(mod q). Hence a** # 1(mod q),
thus e+2k=(N—-1)/p. But e|[N—1, so (N—1)/e is an integer, hence p +
(N—=1)/e. Since N—1=¢ (N—1/¢) and pIN — 1, then ple, thus plg — 1. Also
2|lg — 1, hence 2plg — 1,50 2p < g — 1 and 2p + 1 < q. It follows that N =2kp + 1 <
2X2Ap+Dp+1=4p>+4p+1=0Qp+1)*><q? therefore VN <gq. This con-
cludes the proof.

The criterion of Pocklington is applied as follows to obtain primes of a required
size, say with 100 digits.

First step: Choose, for example, a prime p, with d, =5 digits. Find k, <2(p, + 1)
such that p,=2k;p, +1 has d,=2d, =10 digits or d,=2d,~1=9 digits
and there exists a, <p, satisfying the conditions a¥”'= —1(mod p,) and
ged(akt + 1, p,) = 1. By Pocklington’s criterion, p, is a prime.

Subsequent steps: Repeat the same procedure starting with the prime p, to obtain
the prime pj, etc... In order to produce a prime with 100 digits, the process must be
iterated five times. In tHe last step, k5 should be chosen so that 2ksp5 + 1 has 100
digits.

Feasibility of the Algorithm

Given p and k, with 1 <k <2(p + 1), k not a multiple of p, if N=2kp+1 is a
prime, then it has a primitive root. It would be much too technical to explain in detail
the following results, some known to experts, others still unpublished. It follows from
a generalized form of the Riemann hypothesis, that if x is a large positive real
number and the positive integer « is not a square, then the ratio

#{primes g <x such that a is a primitive root modulo g}
#{primes g < x}
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converges; if a is a prime, the limit is at least equal to Artin’s constant

1
1- ) = 0.37.
q 11):!1113 ( q(q )

Better, given positive integers, a, b, which are not squares and a large prime g, the
probability that a or b is a primitive root modulo ¢, is much larger. Taking a = 2,
b =3, it is at least 58%. The corresponding probability increases substantially when
taking three positive integers «a, b, ¢ that are not squares.

This suggests that we proceed as follows. Given the prime p, choose k, not a
multiple of p, 1 <k <2(p + 1). If N=2kp + 1 is a prime, then very likely 2, 3, or 5
is a primitive root modulo N. If this is not the case, it is more practical to choose
another integer k’, like k, and investigate whether N’ = 2k’p + 1 is a prime.

The question arises: What are the chances of finding k such that N is a prime? I
now discuss this point.

1°) According to a special case of Dirichlet’s famous theorem (see [5], [6]), given p,
there exist infinitely many integers k > 1 such that 2kp + 1 is a prime. This may
be proved in elementary way.

2°) How small may k be, so that 2kp + 1 is a prime? A special case of a deep
theorem of Linnik asserts:

For every sufficiently large p, in the arithmetic progression with first term 1 and
difference 2p, there exists a prime p, = 2kp + 1 satisfying p, < (2p)*; here L is
a positive constant, (that is, L is independent of p) (see [5]).

3°) Recently, Heath-Brown has shown that L <5.5.

4°) In Pocklington’s criterion, it is required to find k <2(p + 1) such that p, = 2kp
+ 1 is a prime. This implies that p, <(2p + 1)%. No known theorem guarantees
that such small values of k lead to a prime.

5°) Recent work of Bombieri, Friedlander and Iwaniec deals with primes p for which
there are small primes p, = 2kp + 1. Their results, which concern averages, point
to the existence of a sizable proportion of primes p with small prime p, = 2kp + 1.

The problems considered above are of great difficulty. In practice, we may ignore
these considerations and find, with a few trials, the appropriate value of k.

Estimated Time to Produce Primes with 100 Digits

The time required to perform an algorithm depends on the speed of the computer and
on the number of bit operations (i.e., operations with digits) that are necessary.

As a basis for this discussion, we may assume that the computer performs 10° bit
operations per second. If we estimate an upper bound for the number of bit
operations, dividing by 106 gives an upper bound for the number of seconds required.

A closer look at the procedure shows that it consists of a succession of the following
operations on natural numbers: multiplication ab modulo n, power a” modulo n,
calculation of greatest common divisor.

It is well known (see [1], [2]) and not difficult to show that for each of the above
operations there exist C>0 and an integer ¢ >1 such that the number of bit
operations required to perform the calculation is at most Cd®, where d is the
maximum of the number of digits of the numbers involved. Combining these
estimates gives an upper bound of the same form Cd* for the method (C >0, e > 1
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and d is the maximum of the number of digits of all integers involved in the
calculation).

It is not my purpose to give explicit values for C and ¢ when p, k, a are given. Let
me just say that C, e are rather small, so the algorithm runs very fast. I stress that in
this estimate the time required in the search for k, a is not taken into account.

The above discussion makes clear that much more remains to be understood in the
production of primes and the feasibility of the algorithm. This task is delegated to our
company’s division of research and development, and I admire our colleagues in the
research subdivision who face the deep mysteries of prime numbers.

Before I rapidly tour our division of quality control, I would like to make a few
brief comments about our preceding considerations. They concern the complexity of
an algorithm. ‘

An algorithm A, performed on natural numbers, is said to run in polynomial time if
there exist positive integers C, e (depending on the algorithm) such that the number
of bit operations (or equivalently, the time) required to perform the algorithm on
natural numbers with at most d digits is at most Cd°.

An algorithm that does not run in polynomial time is definitely too costly to
implement and is rejected by our factory. It is one of the main subjects of research to
design algorithms that run in polynomial time. The algorithm to produce primes of a
given size, for all practical purposes, runs in polynomial time, even though this has
not yet been supported by a proof.

Quality Control

The division of quality control in our factory watches that the primes we sell are
indeed primes. When Pocklington’s method is used we only need to worry if no silly
calculation error was made, because it leads automatically to prime numbers. If other
methods are used, as I shall soon invoke, there must be a control. The division of
quality control also engages in consulting work. A large number N is presented, with
the question: Is N a prime number?

Thus, our division of quality control also deals with tests of primality. Since this is a
cash rewarding activity, there are now many available tests of primality. I may briefly
classify them from the following three points of view:

1. Tests for generic numbers.
Tests for numbers of special forms, like Fn=22"+ 1 (Fermat numbers), M,=
2P — 1, (p prime, Mersenne numbers), etc. ...

2. Tests fully justified by theorems.

Tests based on justification that depends on forms of Riemann’s hypothesis of the

zeros of the zeta function, or on heuristic arguments.

Deterministic tests.

4. Probabilistic or Monte Carlo tests.

w

A deterministic test applied to a number N will certify that N is a prime or that N
is a composite numbers. A Monte Carlo test applied to N will certify either that N is
composite, or that, with a large probability, N is a prime.

Before I proceed, let me state that the main problem tempting the researchers is
the following: Will it be possible to find a fully justified and deterministic test of
primality for generic numbers, which runs in polynomial time? Or will it be proven
that there cannot exist a deterministic, fully justified test of primality that runs in
polynomial time, when applied to any natural number?
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This is a tantalizing and deep problem.

It would be long-winded and complex even to try to describe all the methods and
algorithms used in primality testing. So, I shall concentrate only on the strong
pseudoprime test, which is of Monte Carlo type.

Pseudoprimes Let N be a prime, let a be such that 1 <a < N. By Fermat'’s little
theorem, ¢V ! = 1(mod N).

However, the converse is not true. The smallest example is N =341 =11 X 31,
with a = 2, 234° = 1(mod 341).

The number N is called a pseudoprime in base a, where ged(a, N) =1, if N is
composite and a¥~! = 1(mod N). For each a > 2, there are infinitely many pseudo-
primes in base a. Now observe that every odd prime N satisfies the following
property:

For any a, 2 <a <N, with gcd(a, N) =1, writing N — 1 in the form
N—1=2%d (where 1 <s, d is odd), either a?= 1(mod N) or there (%)
exists r, 0 <r <s, such that a2 ?= —1(mod N) .

Again, the converse is not true, as illustrated by N = 2047 = 23 X 89, with a = 2.
The number N is called a strong pseudoprime in base a, where ged(a, N) = 1, if N
is composite and the condition (*) is satisfied.
It has been shown by Pomerance, Selfridge, and Wagstaff that for every a > 2 there
exist infinitely many strong pseudoprimes in base a.

The strong pseudoprime test The main steps in the strong pseudoprime test for a
number N are the following:

1°) Choose k > 1 numbers a, 2 < a <N, such that ged(a, N) = 1. This is easily done
by trial division and does not require knowledge of the prime factors of N. If
ged(a, N) > 1 for some a, 1 <a <N, then N is composite.

2°) For each chosen base a, check if the condition (¥) is satisfied.

If there is @ such that (*) is not satisfied, then N is composite. Thus, if N is a
prime, then (*) is satisfied for each base a. The events that condition (*) is satisfied
for different bases may be legitimately considered as independent if the bases are
randomly chosen.

Now, Rabin proved (see [5]): Let N be composite. Then the number of bases a for
which N is a strong pseudoprime in base a is less than (N — 1). Thus, if N is
composite, the probability that (*) is satisfied for k bases is at most 1/ 4. Hence,
certification that N is a prime when (*) is satisfied for k distinct bases is incorrect in
only one out of 4% numbers; for example, if k = 30, the certification is incorrect only
once in every 10'® numbers.

The strong pseudoprime test runs in polynomial time and it is applicable to any
number.

If a generalized form of Riemann’s hypothesis is assumed to be true, Miller showed
(see [5]): If N is composite, there exists a base a, with ged(a, N) =1, such that
a < (log N)>*¢, for which (*) is not satisfied.

A new production method We may use Rabin’s test to produce numbers with 100
digits that may be certified to be prime numbers, with only very small probability of
error.

1°) Pick a number N with 100 digits. Before doing any hard work, it is very easy,
with trial division, to find out if this number does, or does not have, any prime
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factor less than, say, 1000. In the latter case, keep this number; in the first case,
discard N, pick another number N’, and proceed similarly.

2°) Use k =30 small numbers a, prime to N, as bases to verify if condition (*) is
satisfied. Discard N if, for some base a, the condition (*) is not satisfied and
repeat the process with some other number N’. If (*) is satisfied for all a then,
according to Rabin’s calculation, we may certify that N is prime; in doing so, we
are incorrect only in at most one out of 10'® numbers. How unlucky can we be
and choose, in succession, numbers which are composite? According to the
inequalities of Chebyshev already indicated, the proportion of numbers with 100
digits that are prime is not less than 3222 = ;L= and not more than 3%3% = 5.
Unintelligent employees who would pick even numbers, or numbers divisible by
3,5,...,0r small primes (say up to 1000) are sure to be fired. Thus the luck of
picking a prime increases and it becomes quite reasonable to use Rabin’s method
of production.

We may sell the number N as if it were a prime, even with a “money back
guarantee” because the probability that we are selling a composite number is only 1
in every 1,000,000,000,000,000,000 sales! This is a better guarantee than anyone can
get in any deal. We are sure that our company will not be bankrupt and will continue
to support generously my trips to advertise our products—all complemented by
lavish dinners and the finest wines, to help convince our customers that primes are
the way of life.

Appendix

Here is an example of a prime with 100 digits that was calculated by L. Roberts,
using the method of Pocklington.

p, = 2333 k, = 2001 a,=2
py = 9336667 k, = 9336705 a,=
ps = 174347410924471 5 = 174347410924479 a;=2
p, = 60794039392135489148308051219

k, = 60794039392135489148308051256 a,=3
ps = 7391830451225043189805749502951935872607026673729850562129
k5 = 5000000000000000000000000000000000000000137 a5=2

pe = 739183045122504318980574950295193587260905203527348622396300677536
3808830429094325308601979054023347

Acknowledgement to Bart Braden for friendly style suggestions.
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