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“A Marvelous Proof”

Fernando Q. Gouvéa

No one really knows when it was that the story of what came to be known as
“Fermat’s Last Theorem” really started. Presumably it was sometime in the late
1630s that Pierre de Fermat made that famous inscription in the margin of
Diophantus’ Arithmetic claiming to have found “a marvelous proof”. It seems now,
however, that the story may be coming close to an end. In June, 1993, Andrew
Wiles announced that he could prove Fermat’s assertion. Since then, difficulities
seem to have arisen, but’ Wiles’ strategy is fundamentally sound and may yet
succeed.

The argument sketched by Wiles is an artful blend of various topics that have
been, for years now, the focus of intensive research in number theory: elliptic
curves, modular forms, and Galois representations. The goal of this article is to
give mathematicians who are not specialists in the subject access to a general
outline of the strategy proposed by Wiles. Of necessity, we concentrate largely on
background material giving first a brief description of the relevant topics, and only
afterwards describe how they come together and relate to Fermat’s assertion.
Readers who are mainly interested in the structure of the argument and who do
not need or want too many details about the background concepts may want to
skim through Section 2, then concentrate on Section 3. Our discussion includes a
few historical remarks, but history is not our main intention, and therefore we only
touch on a few highlights that are relevant to our goal of descnbmg the main ideas
in Wiles’ attack on the problem.

Thanks are due to Barry Mazur, Kenneth Ribet, Serge Lang, Noriko Yui,
George Elliot, Keith Devlin, and Lynette Millett for their help and comments.

1 PRELIMINARIES. We all know the basic statement that Fermat wrote in his
margin. The claim is that for any exponent n > 3 there are no non-trivial integer
solutions of the equation x” + y” = z". (Here, “non-trivial” will just mean that
none of the integers x, y, and z is to be equal to zero.) Fermat claims, in his
marginal note, to have found “a marvelous proof” of this fact, which unfortunately
would not fit in the margin.

This statement became known as “Fermat’s Last Theorem,” not, apparently,
due to any belief that the “theorem” was the last one found by Fermat, but rather
due to the fact that by the 1800s all of the other assertions made by Fermat had
been either proved or refuted. This one was the last one left open, whence the
name. In what follows, we will adopt the abbreviation FLT for Fermat’s statement,
and we will refer to x” + y” = z" as the “Fermat equation.”

The first important results relating to FLT were theorems that showed that
Fermat’s claim was true for specific values of n. The first of these is due to Fermat
himself: very few of his proofs were ever made public, but in one that was he shows
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that the equation

xt 4yt =22
has no non-trivial integer solutions. Since any solution of the Fermat equation with
exponent 4 gives a solution of the equation also, it follows that Fermat’s claim is
true for n = 4.

Once that is done, it is easy to see that we can restrict our attention to the case
in which # is a prime number. To see this, notice that any number greater than 2 is
either divisible by 4 or by an odd prime, and then notice that we can rewrite an
equation

ka + ymk — ka

as
(™) + " = (M,

so that any solution for n = mk yields at once a solution for n = k. If n is not

prime, we can always choose k£ to be either 4 or an odd prime, so that the problem

reduces to these two cases.

In the 1750s, Euler became interested in Fermat’s work on number theory, and
began a systematic investigation of the subject. In particular, he considered the
Fermat equation for n = 3 and n = 4, and once again proved that there were no
solutions. (Euler’s proof for n = 3 depends on studying the “numbers” one gets by
adjoining V— 3 to the rationals, one of the first instances where one meets
“algebraic numbers.”) A good historical account of Euler’s work is to be found in
[Wei83]. In the following years, several other mathematicians extended this step by
stepto n=15,7,.... A general account of the fortunes of FLT during this time
can be found in [Rib79].

Since then, ways for testing Fermat’s assertion for any specific value of n have
been developed, and the range of exponents for which the result was known to be
true kept getting pushed up. As of 1992, one knew that FLT was true for
exponents up to 4000 000 (by work of J. Buhler).

It is clear, however, that to get general results one needs a general method, i.e.,
a way to connect the Fermat equation (for any »n) with some mathematical context
which would allow for its analysis. Over the centuries, there have been many
attempts at doing this; we mention only the two biggest successes (omitting quite a
lot of very good work, for which see, for example, [Rib79].

The first of these is the work of E. Kummer, who, in the mid-nineteenth
century, established a link between FLT and the theory of cyclotomic fields. This
link allowed Kummer to prove Fermat’s assertion when the exponent was a prime
that had a particularly nice property (Kummer named such primes “regular”). The
proof is an impressive bit of work, and was the first general result about the
Fermat equatlon Unfortunately, while in numencal tests a good percentage of
primes seem to turn out to be regular, no one has yet managed to prove even that
there are infinitely many regular primes. (And, ironically, we do have a proof that
there are infinitely many primes that are not regular.) A discussion of Kummer’s
approach can be found in [Rib79]; for more detailed information on the cyclotomic
theory, one could start with [Was82].

The second accomplishment we should mention is that of G. Faltings, who, in
the early 1980s, proved Mordell’s conjecture about rational solutions to certain
kinds of polynomial equations. Applying this to the Fermat equations, one sees
that for any » > 4 one can have only a finite number of non-trivial solutions. Once
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again, this is an impressive result, but its impact on FLT itself turns out to be
minor because we have not yet found a way to actually determine how many
solutions should exist. For an introduction to Faltings’ work, check [CS86], which
contains an English translation of the original paper.

Wiles’ attack on the problem turns on another such linkage, also developed in
the early 1980s by G. Frey, J.-P. Serre, and K. A. Ribet. This one connects FLT
with the theory of elliptic curves, which has been much studied during all of this
century, and thereby to all the machinery of modular forms and Galois representa-
tions that is the central theme of Wiles’ work. The main goal of this paper is to
describe this connection and then to explain how Wiles attempts to use it to prove
FLT.

Notation. We will use the usual symbols Q for the rational numbers and Z for the
integers. The integers modulo m will be written! as Z/mZ; we will most often
need them when m is a power of a prime number p. If p is prime, then Z/pZ is a
field, and we commemorate that fact by using an alternative notation: F,=2/pZ.

2 THE ACTORS. We begin by introducing the main actors in the drama. First, we
briefly (and very informally) introduce the p-adic numbers. These are not so much
actors in the play as they are part of the stage set: tools to allow the actors to do
their job. Then we give brief and impressionistic outlines of the theories of Elliptic
Curves, Modular Forms, and Galois Representations.

2.1 p-adic Numbers. The p-adic numbers are an extension of the field of rational
numbers which are, in many ways, analogous to the real numbers. Like the real
numbers, they can be obtained by defining a notion of distance between rational
numbers, and then passing to the completion with respect to that distance. For our
purposes, we do not really need to know much about them. The crucial facts are:

1. For each prime number p there exists a field Q,, which is complete with
respect to a certain notion of distance and contains the rational numbers as
a dense subfield.

2. Proximity in the p-adic metric is closely related to congruence properties
modulo powers of p. For example, two integers whose difference is divisible
by p" are “close” in the p-adic world (the bigger the n, the closer they are).

3. As a consequence, one can think of the p-adics as encoding congruence
information: whenever one knows something modulo p” for every n, one
can translate this into p-adic information, and vice-versa.

4. The field Q, contains a subring Z,, which is called the ring of p-adic
integers. (In fact, Z p 18 the closure of Z in Q,)

There is, of course, a lot more to say, and the reader will find it said in many
references, such as [Kob84], [Cas86], [Ami75], and even [Gou93]. The p-adic
numbers were introduced by K. Hensel (a student of Kummer), and many of the
basic ideas seem to appear, in veiled form, in Kummer’s work; since then, they
have become a fundamental tool in number theory.

"Many elementary texts like to use Z,, as the notation for the integers modulo m; for us (and for
serious number theory in general), this notation is inconvenient because it collides with the notation for
the p-adic integers described below.
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2.2 Elliptic Curves. Elliptic curves are a special kind? of algebraic curves which
have a very rich arithmetical structure. There are several fancy ways of defining
them, but for our purposes we can just define them as the set of points satisfying a
polynomial equation of a certain form.

To be specific, consider an equation of the form

y2+axy +azy =x>+a,x*+a,x + aq,

where the a; are integers (there is a reason for the strange choice of indices on the
a;, but we won’t go into it here). We want to consider the set of points (x, y) which
satisfy this equation. Since we are doing number theory, we don’t want to tie
ourselves down too seriously as to what sort of numbers x and y are: it makes
sense to take them in the real numbers, in the complex numbers, in the rational
numbers, and even, for any prime number p, in [, (in which case we think of the
equation as a congruence modulo p). We will describe the situation by saying that
there is an underlying object which we call the curve E and, for each one of the
possible fields of definition for points (x, y), we call the set of possible solutions
the “points of E” over that field. So, if we consider all possible complex solutions,
we get the set E(C) of the complex points of E. Similarly, we can consider the real
points E(R), the rational points E(Q), and even the F,-points E(F,).

We haven’t yet said when it is that such equations define elliptic curves. The
condition is simply that the curve be smooth. If we consider the real or complex
points, this means exactly what one would expect: the set of points contains no
“singular” points, that is, at every point there is a well-defined tangent line. We
know, from elementary analysis, that an equation f(x, y) = 0 defines a smooth
curve exactly when there are no points on the curve at which both partial
derivatives of f vanish. In other words, the curve will be smooth if there are no
common solutions of the equations

d a
Fen =0 Ly =0 Ly -o

Notice, though, that this condition is really algebraic (the derivatives are deriva-
tives of polynomials, and hence can be taken formally). In fact, we can boil it down
to a (complicated) polynomial condition in the a;. There is a polynomial A(E) =
Alay, ay, a3, a,, ag) in the a; such that E is smooth if and only if ACE) # 0. This
gives us the means to give a completely formal definition (which makes sense even
over F,). The number A(E) is called the discriminant of the curve E.

Definition 1. Let K be a field. An elliptic curve over K is an algebraic curve
determined by an equation of the form

y2+axy +azy =x>+a,x*+a,x + ag,
where each of the a; belongs to K and such that A(ay, a,, as, a,, ag) # 0.

Speci'alists would want to rephrase that definition to allow other equations,
provided that a well-chosen change of variables could transform them into equa-
tions of this form.

2Perhaps it’s best to dispel the obvious confusion right up front: ellipses are not elliptic curves. In
fact, the connection between elliptic curves and ellipses is a rather subtle one. What happens is that
elliptic curves (over the complex numbers) are the “natural habitat” of the elliptic integrals which arise,
among other places, when one attempts to compute the arc length of an ellipse. For us, this connection
will be of very little importance.
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It’s about time to give some examples. To make things easier, let us focus on the
special case in which the equation is of the form y? = g(x), with g(x) a cubic
polynomial (in other words, we’re assuming a, = a; = 0). In this case, it’s very
easy to determine when there can be singular points, and even what sort of
singular points they will be. If we put f(x, y) = y?> — g(x), then we have

9 ad
%(x,y) = —¢'(x) and %UJ) =2y,

and the condition for a point to be “bad” becomes

y’=g(x) —g(x)=0 2y=0,
which boils down to y = g(x) = g’(x) = 0. In other words, a point will be bad
exactly when its y-coordinate is zero and its x-coordinate is a double root of the
polynomial g(x). Since g(x) is of degree 3, this gives us only three possibilities:

o g(x) has no multiple roots, and the equation defines an elliptic curve;
o g(x) has a double root;
o g(x) has a triple root.

Let’s look at one exampl'e of each case, and graph the real points of the
corresponding curve.

For the first case, consider the curve given by y? = x> — x. Its graph is in figure
1 (a) (to be precise, this is the graph of its real points). A different example of the
same case is given by y? = x> + x; see figure 1(b). (The reason these look so

3
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-1\ -0.5 65 1 1.5 2 0.5 1 1.5 2
-1 -1
-2
-2
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1
0.5 1
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(© y%2=1x%+x% anode (d) y2 =x3 a cusp
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different is that we are only looking at the real points of the curve; in fact, over the
complex numbers these two curves are isomorphic.)

When there are “bad” points, what has happened is that either two roots of
g(x) have “come together” or all three roots have done so. In the first case, we get
a loop. At the crossing point, which is usually called a “node,” the curve has two
different tangent lines. See Figure 1(c), where we have the graph of the equation
y2 = x3 + x? (double root at zero).

In the final case, not only have all three roots of g(x) come together, but also
the two tangents in the node have come together to form a sort of “double
tangent” (this can be made precise with some easy algebra of polynomials, but it’s
more fun to think of it geometrically). The graph now looks like Figure 1(d), and
we call this kind of singular point a “cusp”.

How does all this relate to the discriminant A we mentioned above? Well, if
r;,r, and r; are the roots of the polynomial g(x), the discriminant for the
equation y? = g(x) turns out to be

A =K(r,— 1) (ry = r3)(ry— 13)°

where K is a constant. This does just what we want: if two of the roots are equal, it
is zero, and if not, not. Furthermore, it is not too hard to see that A is actually a
polynomial in the coefficients of g(x), which is what we claimed. In other words,
all that the discriminant is doing for us is giving a direct algebraic procedure for
determining whether there are singular points.

While this analysis applies specifically to curves of the form y? = g(x), it
actually extends to all equations of the sort we are considering: there is at most
one singular point, and it is either a node or a cusp.

One final geometric point: as one can see from the graphs, these curves are not
closed. It is often convenient to “close them up.” This is done by adding one more
point to the curve, usually referred to as “the point at infinity.”” This can be done
in a precise way by embedding the curve into the projective plane, and then taking
the closure. For us, however, the only important thing is to remember that we
actually have one extra point on our curves. (One should imagine it to be
“infinitely far up the y-axis,” but keep in mind that there is only one “point at
infinity” on the y-axis, so that it is also “infinitely far down.”)

With some examples in hand, we can proceed to deeper waters. In order to
understand the connection we are going to establish between elliptic curves and
FLT, we need to review quite a large portion of what is known about the rich
arithmetic structure of these curves.

The first thing to note is that one can define an operation on the set of points of
an elliptic curve that makes it, in a natural way, an abelian group. The operation is
usually referred to as “addition.” The identity element of this group turns out to
be the point at infinity (it would be more honest to say that we choose the point at
infinity for this role). ]

We won’t enter into the details of how one adds points on an elliptic curve. In
fact, there are several equivalent definitions, each of which has its advantages! The
reader should see the references for more details of how it is done (and the proof
that one does get a group). The main thing to know about the definition, for now,
is that it preserves the field of definition of the points: adding two rational points
gives a rational point, and so on.

What this means is that for every choice of a base field, we can get a group of
points on the curve with coordinates in that field, so that in fact an elliptic curve
gives us a whole bunch of groups, which are, of course, all related (though
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sometimes related in a mysterious way). So, given an E, we can look at the
complex points E(C), which form a complex Lie group which is topologically a
torus, or we can look at the real Lie group E(R), which turns out to be either
isomorphic to the circle S! or to the direct product Z/2Z X S*. (Look back at the
examples above; can you see which is which?)

From an arithmetical point of view, however, the most interesting of these
groups is the group of rational points, E(Q). A point P € E(Q) gives a solution in
rational numbers of our cubic equation, and looking for such solutions is, of
course, an example of solving a diophantine equation, a sort of problem that is
quite important in number theory. What is especially nice about E(Q) is the fact,
proved by L. Mordell (and extended by A. Weil) in the 1920s, that it is a finitely
generated abelian group. What this means is just the following: there is a finite list
of rational points on the curve (or, if one prefers, of rational solutions to the
equation) such that every other rational solution is obtained by combining (using
the addition law) these points with one another. These points are called the
generators of the group E(Q), which is usually called the Mordell-Weil group of E.

The curves we considered earlier have very simple Mordell-Weil groups. For the
curve given by y? = x® — x (figure 1a), it has four points; and for y2=x3 + x
(figure 1b) it has two. It is easy, though, to give more interesting examples.
Here is one, chosen at random from [Cre92]: if E is the curve defined by y? +y =

3 — x? — 2x + 2, the Mordell-Weil group E(Q) is an infinite cyclic group, gener-
ated by the point (2, 1).

Of course, knowing that we have a finitely generated group raises the obvious
question of estimating or computing the number of generators needed and of how
one might go about actually finding these generating points. Both of these
questions are still open, even though there are rather precise conjectures about
what their answers should be. For many specific curves, both the number and the
generators themselves have been completely worked out (see, for example, the
tables in [Cre92]), but the general problem still seems quite difficult.

A fundamental component of the conjectural plan for determining the genera-
tors is considering, for each prime number p, the reduction of our curve modulo p.
The basic idea is quite simple: since our equation has integer coefficients, we can
reduce it modulo p” and look for solutions in the field F, of integers modulo p.
This should give a finite? group E(|F ), whose structure should be easier to analyse
than that of the big group E(Q). It s a rather simple idea, but several complica-
tions* arise.

The main thing that can go wrong is that the reduction modulo p may fail to be
an elliptic curve. That is actually very easy to see. To tell whether the curve is
elliptic (that is, if it has no singular points), one needs to look at A. It is perfectly
possible for A to be nonzero (so the curve over Q is elliptic) while being at the
same time congruent to zero modulo p (so that the curve over F, is singular). This
pherromenon is called bad reduction, and it is easy to come up w1th examples. One
might take p =5, and look at the curve y? = x3 — 5. This turns out to be an
elliptic curve over Q, but its reduction modulo 5 is going to have a cusp. One says,
then, that the curve has bad reduction at 5. In fact, the discriminant turns out to be

31t is finite because, apart from the point at infinity, there are only p? possible points. In fact, the
max1mum possible number of points is smaller than that, but that fact takes some proving.

1t may seem a bit perverse to dwell on the nature of these complications, but it will turn out that
we need to have at least some understanding of how this goes later on.
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A = —10800, which is clearly divisible by 2,3, and 5, so that the curve has bad
reduction at each of these. (In each case, it’s easy to verify that the reduced curve
has a cusp.)

We want to classify the possible types of reduction, but there is one further
glitch that we have to deal with before we can do so. To see what it is, consider the
curve y2 = x3 — 625x. At first glance, it seems even worse than the first, and the
discriminant, which turns out to be A = — 15625000000, looks very divisible by 5.
But look what we can do: let’s change variables by setting x = 25u = 5%u and

= 125v = 5%v. Then our equation becomes

(5°0)% = (52u)° — 625(5%u),

which simplifies to

and hence to

v:=u?—-u,

which is not only a nice elliptic curve, but has good reduction at 5. In other words,
this example shows that curves which are isomorphic over Q can have very different
reductions modulo p.

It turns out that among all the possible equations for our curve, one can choose
an equation that is minimal, in the sense that its discriminant will be divisible by
fewer primes than the discriminant for other equations. Since the primes that
divide the discriminant are the primes of bad reduction, a minimal equation will
have reduction properties that are as good as possible. When studying the
reduction properties of the curve, then, one must also pass to such a minimal
equation (and there are algorithms to do this).

Well, then, suppose we have done so, and have an elliptic curve E given by a
minimal equation. Then we can classify all prime numbers into three groups:

e Primes of good reduction: those which do not divide the discriminant of the
minimal equation. The curve modulo p is an elliptic curve, and we have a
group E(F). _

e Primes of multiplicative reduction: those for which the curve modulo p has a
node. If the singular point is (x,, y,), it turns out that the set E(F,) —
{(xg, yo)} has a group structure, and is isomorphic to the multiplicative group
F - {0}.

o Pl;imes of additive reduction: those for which the curve modulo p has a cusp.
If the singular point is (x,, y,), the set E(F,) — {(x,, y,)} once again has a
group structure, and is isomorphic to the additive group F,.

No curve can have good reduction everywhere, so there will always be some bad
primes, but the feeling one should get is that multiplicative reduction is somehow
not as bad as additive reduction. There are various technical reasons for this,
which we don’t really need to go into. Instead, we codify the information about the
reduction types of the curve into a number, called the conductor of the curve. We
define the conductor to be a product N = [1p™®, where

0 if E has good reduction at p
n(p)=11 if E has multiplicative reduction at p
> 2 if E has additive reduction at p

(The exact value of n(p) for the case of additive reduction depends on some rather
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subtle properties of the reduction modulo such primes; most of the time, the
exponent is 2.) The result is that one can tell, by looking at the conductor, exactly
what the reduction type of E at each prime is.

The elliptic curves we will want to consider are those whose reduction proper-
ties are as good as possible. Since good reduction at all primes is not possible, we
opt for the next best thing: good reduction at almost all primes, multiplicative
reduction at the others. Such curves are called semistable:

Definition 2. An elliptic curve is called semistable if all of its reductions are either
good or multiplicative. Equivalently, a curve is semistable if its conductor is square-
free.

A crucial step in the application of Wiles’ theorem to FLT will be verifying that
a certain curve is semistable. Just to give us some reference points, let’s look at a
few examples.

1. Let E, be the curve y? = x> — 5, which we considered above. One checks
that this equation is minimal, and that the curve has additive reduction at
2,3,and 5, so that it is not semistable. The conductor turns out to be equal
to 10800 (essentially, the same as the discriminant!).

2. Let E, be the curve y? + y = x* + x. This has multiplicative reduction at 7
and 13 (checking this makes a nice exercise) and good reduction at all other
primes. Hence, E, is semistable and its conductor is 91.

3. Let E; be the curve y? = x> + x? 4+ 2x + 2 (which is minimal). This has
discriminant A = —1152 = —27 - 32, so that the bad primes are 2 and 3. It
turns out that the reduction is multiplicative at 3 and additive at 2, and the
conductor is 384; the curve is not semistable.

4. The main example for the purpose at hand: Let a,b,and c¢ be relatively
prime integers such that a + b + ¢ = 0. Consider the curve E,,. whose
equation® is y2 = x(x — a)(x + b). Depending on what a, b, and c are, this
equation may or may not be minimal, so let’s make the additional assump-
tions that ¢ = —1 (mod 4) and that b = 0 (mod 32). In this case, the
equation is not minimal. A minimal equation for this curve turns out to be

b—a-1 5 ab

T

which we get by the change in variables x —» 4x,y — 8y + 4x. One can
then compute that the discriminant is A = a?b%c?/256 (not surprising: a
constant times the product of the squares of the differences of the roots of
the original cubic), and that the curve is semistable. The primes of bad
reduction are those that divide abc (this would be easy to see directly from
the equation, by checking when there is a multiple root modulo p), and
therefore the conductor is equal to the product of the primes that divide
abc:

y2+xy =x3+

N=Tlp

plabc

1t may strike the reader as funny that ¢ is absent from the equation. Keep in mind, however, that ¢
is completely determined by a and b, so that it is really not as absent as all that. The crucial point is
that the roots of the cubic on the right hand side are 0, a, and —b, so that the differences of the roots
are (up to sign) exactly a, b, and c.
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(this number is sometimes called the radical of abc). We will be using
curves of the form E_, . (for very special a, b, and ¢) when we make the link
with FLT.

abc

We need a final bit of elliptic curve theory. It is interesting to look at the
number of points in the groups E(F,) as p ranges through the primes of good
reduction for E. Part of the motivation for this is the reasoning that if the group
E(Q) is large (i.e. there are many rational solutions), one would expect that for
many choices of the prime p many of the points in E(Q) would survive reduction
modulo p, so that the group E([Fp) would be large. Therefore, one would like to
make some sort of conjecture that said that if the E(IFp) are very large for many
primes p, then the group E(Q) will be large.

Elaborating and refining this idea leads to the conjecture of Birch and Swinner-
ton-Dyer, which we won’t get into here. But even this coarse version suggests that
the variation of the size of E(IFp) as p runs through the primes should tell us
something about the arithmetic on the curve. To “encode” this variation, we start
by observing that the (projective) line over F, has exactly p + 1 points (the p
elements of F,, plus the point at infinity). We take this as the “standard” number
of points for a curve over [, and, when we look at E([Fp), record how far from the
standard we are. To be precise, given an elliptic curve E and a prime number p at
which E has good reduction, we define a number a, by the equation

#E(F,)=p+1—a,.

For primes of bad reduction, we extend the definition in a convenient way; it turns
out that we get a, = +1 when the reduction is multiplicative (with a precise rule
to decide which) and a, = 0 when it is additive.

The usual way to “record” the sequence of the a, is to use them to build a
complex analytic function called the L-function of the curve E. It then is natural to
conjecture that this L-function has properties similar to those of other L-functions
that arise in number theory, and that one can read off properties of E from
properties of its L-function. This is a huge story which we cannot tell in this
article, but which is really very close to some of the issues which we do discuss
later on. Suffice it to say, for now, that we get a function

> a
L(E,s) = Z 'n_: >

n=1

where the a, are exactly the same as the ones we just introduced, the a, are
determined from the a, by “Euler product” expansion for the L-function, and the
series can be shown to converge when Re(s) > 3 /2. The L-function is conjectured
to have an analytic continuation to the whole complex plane and to satisfy a
certain functional equation.

It is time to introduce the other actors in the play and to explain how they relate
to elliptic curves. The reader who would like fo delve further into this theory has a
lot to choose from. As an informal introduction, one could look at J. Silverman’s
article [Sil93], which relates elliptic curves to “sums of two cubes” and Ramanujan’s
taxicab number. Various introductory texts are available, including [Cas91], [Hus87],
[Kna92], [Sil86], and [ST92]. Each of these has particular strengths; the last is
intended as an undergraduate text. In addition to these and other texts, the
interested reader might enjoy looking at symbolic manipulation software that will
handle elliptic curves well. Such capabilities are built into Gp-PARI and SIMATH, and
can be added to Mathematica by using Silverman’s EllipticCurveCalc package
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(which is what we used for most of the computations in this paper), and to Maple
by using Connell’s Apecs package. See[C *], [Z *], [SvM], [Conl.

2.3 Modular Forms. Modular forms start their lives as analytic objects (or, to be
more honest, as objects of group representation theory), but end up playing a very
intriguing role in number theory. In this section, we will very briefly sketch out
their definition and explain their relation to elliptic curves.

Let ) = {x + iyly > 0} be the complex upper half-plane. As is well known (and,
in any case, easy to check), matrices in SL,(Z) act on § in the following way. If
v € SL,(2) is the matrix

_ (a b)
Y= c d )

(so that a, b, c,and d are integers and ad — bc = 1), and z € ), we define
az+b
cz+d’

vy z=

It is easy to check that if z € f) then y - z € b, and that y, - (y, - 2) = (y,y,) - z.

We want to consider functions on the upper half-plane which are “as invariant
as possible” under this action, perhaps when restricted to a smaller group. The
subgroups we will need to consider are the “congruence subgroups” which we get
by adding a congruence condition to the entries of the matrix. Thus, for any
positive integer N, we want to look at the group

T,(N) = {'y - (‘C‘ Z) € SLy(Z)lc = O(modN)}.

We are now ready to begin defining modular forms. They will be functions
f:h — C, holomorphic, which “transform well” under one of the subgroups T(N).
To be specific, we require that there exist an integer k such that

f(az +b) = (cz + d)*f(2).

cz+d

Applying this formula to the special case in which the matrix is

(5 1)

shows that any such function must satisfy f(z + 1) = f(z), and hence must have a
Fourier expansion
f(z) = Y a,q" where g =e?™".
n=—o

We require that this expression in fact only involve non-negative powers of g (and
in fact we extend that requirement to a finite number of other, similar, expansions,
which the experts call the “Fourier expansions at the other cusps”). A function
satisfying all of these constraints is called a modular form of weight k on Ty(N).
The number N is usually called the level of the modular form f.

We will need to consider one special subspace of the space of modular forms of
a given weight and level. Rather than having a Fourier expansion with non-nega-
tive powers only, we might require positive powers only (in the main expansion and
in the ones “at the other cusps”). We call such modular forms cusp forms; they
turn out to be the more interesting part of the space of modular forms.
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Finally, one must make a remark on the relation between the theory at various
levels: if N divides M, then every form of level N (and weight k) gives rise to (a
number of) forms of level M (and the same weight). The subspace generated by all
forms of level M and weight k which arise in this manner (from the various
divisors of M) is called the space of old forms of level M. With respect to a
natural inner product structure on the space of modular forms, one can then take
the orthogonal complement of the space of old forms. This complement is called
the space of new forms, which are the ones we will be most interested in.

What really makes the theory of modular forms interesting for arithmetic is the
existence of a family of commuting operators on each space of modular forms,
called the Hecke operators. We will not go into the definition of these operators
(they are quite natural from the point of view of representation theory); for us the
crucial things will be:

« For each positive integer n relatively prime to the level N, there is a Hecke
operator 7, acting on the space of modular forms of fixed weight and level N.

o The Hecke operators commute with each other.

e If m and n are relatively prime, then 7,,, = T,7T,,.

We will be especially interested in modular forms which are eigenvectors for the
action of all the Hecke operators, i.e., forms for which there exist numbers A, such
that 7,(f) = A,f for each n which is relatively prime to the level. We will call
such forms eigenforms.

This is all quite strange and complicated, so let’s immediately point out one
connection between modular forms and elliptic curves. Suppose one has a modular
form which is

« of weight 2 and level N,
e a cusp form,

e NCW,

e an eigenform.

If that is the case, one can normalize the form so that its Fourier expansion looks
like

f(z) =Y a,q" witha, = 1.
n=1

Suppose that, once we have done the normalization,
« all of the Fourier coefficients a, are integers.

Then there exists an elliptic curve whose equation has integer coefficients, whose
conductor is N, and whose a, are exactly the ones that appear in the Fourier
expansion of f. In particular, the L-function of E can be expressed in terms of f
(as a Mellin transform), and the nice analytic properties of f then allow us to
prove that the L-function does have an analytic continuation and does satisfy a
functional equation.

This connection between forms and elliptic curves is so powerful that it led
people to investigate the matter further. The first one to suggest that every elliptic
curve should come about in this manner was Y. Taniyama, in the mid-fifties. The
suggestion only penetrated the mathematical culture much later, largely due to the
work of G. Shimura, and it was made more precise by A. Weil’s work pinning
down the role of the conductor. We now call this the “Shimura-Taniyama-Weil
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Conjecture.” Here it is:

Conjecture 1 (Shimura-Taniyama-Weil). Let E be an elliptic curve whose equation
has integer coefficients. Let N be the conductor of E, and for each n let a, be the
number appearing in the L-function of E. Then there exists a modular form of weight
2, new of level N, an eigenform under the Hecke operators, and (when normalized)
with Fourier expansion equal to 3.a,q".

For any specific curve, it is not too hard to check that this is true. One takes E,
determines the conductor and the a,, for a range of n. Since the space of modular
forms of weight 2 and level N is finite-dimensional, knowing enough of the a,
must determine the form, and we can go and look if it is there. (In general, given a
list of a,,, it is not at all easy to determine whether 3.a,q" is the Fourier expansion
of a modular form, so we need to do it the other way: we generate a basis of the
space of modular forms, then try to find our putative form as a linear combination
of the basis.) If we find a form with the right (initial chunk of) Fourier expansion,
this gives prima facie evidence that the curve satisfies the STW conjecture. To
clinch the matter, one can use a form of the Cebotarev density theorem to show
that if enough (in an explicit sense) of the a,, are right, then they all are.

- This method has been used to verify the STW conjecture for any number of
specific curves (see, for example, [Cre92]). The conjecture has a really crucial role
in the theory of elliptic curves; in fact, curves that satisfy the conjecture are known
as “modular elliptic curves,” and many of the fundamental new results in the
theory have only been proved for curves that have this property.

As our final remark on modular forms, we point out that it is possible, for any
given N, to determine (essentially using the Riemann-Roch theorem) the exact
dimension of the space of cusp forms of weight 2 and level N. This gives us a very
good handle on what curves of that conductor should exist (if the STW conjecture
is true).

For more information on modular forms, one might look at [Lan76], [Miy89], or
[Shi71]. There is an intriguing account of the Shimura-Taniyama-Weil conjecture,
in a very different spirit, in Mazur’s article [Maz91], and a useful survey in [Lan91].

2.4 Galois Representations. The final actors in our play are Galois representa-
tions. One starts with the Galois group of an extension of the field of rational
numbers. To understand this Galois group, one can try to “represent” the
elements of the group as matrices. In other words, one can try to find a vector
space on which our Galois group acts, which gives a way to associate a matrix to
each element of the group. This in fact gives a group homomorphism from the
Galois group to a group of matrices (this need not be injective; when it is, one calls
the representation “faithful”).

Kather than work with specific finite éxtensions of Q, we work with the Galois
group G = Gal(Q/Q) of the algebraic closure of Q. This is a huge group (which
one makes more manageable by giving it a topology) that hides within itself an
enormous amount of arithmetic information. The representations we will be
considering will be into 2 X2 matrices over various fields and rings, and they will
(for the most part) be obtained from elliptic curves and from modular forms.

To see how to get Galois representations from an elliptic curve, let’s start with
an elliptic curve E, whose equation has coefficients in Z. Choose a prime p. Since
the (complex, say) points of E form a group, one can look in this group for points
which are of order p (that is, for points (x, y) such that adding them to themselves
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p times gives the identity). It turns out that (over C) there are p? such points, and
they form a subgroup which we donate by E[ p]. In fact, this group is isomorphic to
the product of two copies of F:

E[p] =F, xF,.

Now, the points in E[ p] are a priori complex, but on closer look one sees that in
fact they are all defined over some extension of @, and in particular that
transforming the coefficients of a point of order p by the Galois group G yields
another point of order p. In fact, it’s even better than that: since the rule for
adding points is defined in rational terms, the whole group structure is preserved.
Since E[ p] looks like a vector space of dimension 2 over F,, this means that each
element of G acts as a linear transformation on this space, and hence that we get a
representation

pe 2 G = GL,(F).

(We use a bar to remind ourselves that this is a representation “modulo p.”)

Now, GL2([Fp) is a finite group, and G is very infinite, so this representation,
while it tells us a lot, can’t be the whole story. It turns out, however, that we can
use p-adic numbers to get a whole lot more. Instead of considering only the points
of order p, we can consider points of order p” for each n. This gives a whole
bunch of subgroups

E[p] cE[p?] cE[p?] c ...

and a whole bunch of representations, into GL,(F,), then into GL (Z /p*7), then
into GL,(Z /p37) ... . Putting all of these together ends up by giving us a p-adic
representation

pe,: G = GL,(Q,)

which hides within itself all of the others. The representations pj , contain a lot of
arithmetic information about the curve E.

And how does it look on the modular forms side? Well, it follows from the work
of several mathematicians (M. Eichler, G. Shimura, P. Deligne, and J.-P. Serre)
that, whenever we have a modular form f (of any weight) which is an eigenform
for the action of the Hecke operators and whose Fourier coefficients (after
normalization) are integers, we can construct a representation

P G = GLy(Q,)

which is attached to f in a precise sense which is too technical to explain here.
(The construction of the representation is quite difficult, and in fact no satisfactory
expository account is yet available.) )

The crucial thing to know, for our purposes, is that when an elliptic curve E
arises from a modular form f, then the representations pg , and p; , are the same.
In fact, a converse is also true: given a curve E, if one can find a modular form f
such that pg , is the same as p , then E will be modular.

3 THE PLAY. We are now ready to take the plunge and try to see how all of this
theory relates to Fermat’s Last Theorem. The idea is to assume that FLT is false,
and then, using this assumption, to construct an elliptic curve that contradicts just
about every conjecture under the sun.
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3.1 Linking FLT to Elliptic Curves. So let’s start by assuming FLT is false, i..,
that there exist three non-zero integers u,v,and w such that u? + v? + w? =0
(as we know, we only need to consider the case of prime exponent p, which is
therefore odd, so that we can recast a solution in Fermat’s form to be in the form
above). Since we know that the theorem is true for p = 3, we might as well assume
that p > 5. We may clearly assume that u,v,and w are relatively prime, which
means that precisely one of them must be even. Let’s say v is even. Since p is
bigger than two, we can see, by looking at the equation modulo 4, that one of u
and w must be congruent to —1 modulo 4, and the other must be congruent to 1.
Let’s say u = —1 (mod 4).

Let’s use this data to build an elliptic curve, following an idea due to G. Frey
(see [Fre86], [Fre87a], [Fre87b]). We consider the curve

y2=x(x —u?)(x + v?).

This is usually known as the Frey curve. Following our discussion, above, of the
curve E,,. we already know quite a bit about the Frey curve. Here’s a summary:

1. Since v is even and p > 5, we know that we have v” = 0 (mod 32). We also
know that u? = —1 (mod 4). This puts us in the right position to use what
we know about curves E,; .

2. The minimal discriminant of the Frey curve is

B (uow)??

256

3. The conductor of the Frey curve is the product of all the primes dividing
uPvPw?, which is, of course, the same as the product of all the primes
dividing uow.

4. The Frey curve is semistable.

Now, as Frey observed in the mid-1980s, this curve seems much too strange to
exist. For one thing, its conductor is extremely small when compared to its
discriminant (because of that exponent of 2p). For another, its Galois representa-
tions are pretty weird. Very soon, people were pointing out that there were several
conjectures that would rule out the existence of Frey’s curve, and therefore would
prove that Fermat was correct in saying that his equation had no solutions.

3.2 FLT follows from the Shimura-Taniyama-Weil Conjecture. It was already
clear to Frey that it was likely that the existence of his curve would contradict the
Shimura-Taniyama-Weil conjecture, but he was unable to give a solid proof of this.
A few months after Frey’s work, Serre pinpointed, in a letter to J.-F. Mestre,
exactly what one would need to prove to establish the link. In this letter (published
as [Ser87a]), Serre describes the situation with the phrase “STW + ¢ implies
Fermat.” Because of this, the missing theorem became known, for a while, as
“conjecture epsilon.” This conjecture was proved by K. A. Ribet in [Rib90] about a
year later, and this established the link. A survey of these results can be found in
[Lan91].
What Serre noticed was that the representation modulo p

Pe G~ GL,(F,)

obtained from the Frey curve was rather strange. It looked like the sort of
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representation one would get from a modular form of weight 2, but if one applied
the “wusual recipe” for guessing the level of that modular form, the answer came
out to be N = 2. He also showed that the modular form must be a cusp form. The
problem is that there are no cusp forms of weight 2 and level 2!

So suppose there is a solution of the Fermat equation for some prime p, and
use this solution to build a Frey curve E. Let N be the conductor of E (which we
determined above). Suppose, also, that STW holds for E, so that there exists a
modular form of weight 2 and level N whose Galois representation is the same as
the one for E. Then we have the following curious situation: we have a representa-
tion p which we know comes from a modular form of weight 2 and level N, but
which looks as if it should come from a modular form of smaller level.

Here is where Ribet’s theorem comes in: he proves that (under certain hypothe-
ses which will hold in our case) whenever this happens the modular form of
smaller level must actually exist! Notice that this doesn’t mean that the original
modular form came from lower level; what it means is that there is a form of lower
level whose representation reduces modulo p to the same representation.

The upshot of Ribet’s theorem is the following:

Theorem 1 (Ribet). Suppose STW holds for all semistable elliptic curves. Then FLT
is true.

This is true because if FLT were false, one could choose a solution of the
Fermat equation and use it to construct a Frey curve, which would be a semistable
elliptic curve. By STW, this curve would be attached to a modular form, so that its
Galois representation is attached to a modular form. By Ribet’s theorem, there
must exist a modular form of weight 2 and level 2 which gives the same representa-
tion modulo p. Just a little more work allows one to check that this modular form
must be a cusp form. But this is a contradiction, because there are no cusp forms
of weight 2 and level 2.

3.3 Deforming Galois Representations. It is now that we come to Wiles’ work. His
idea was that one can attack the problem of proving STW by using the Galois
representations, and in particular by thinking of “deformations” of Galois repre-
sentations. The idea is to consider not only a representation modulo p, but also all
the possible p-adic representations attached to it (one speaks of “all the possible
lifts” of the representation modulo p). These can be thought of as “deformations”
because, from the p-adic point of view, they are “close” to the original representa-
tion.

This sort of idea had been introduced by B. Mazur in [Maz89]. Mazur showed
that one could often obtain a “universal lift,” i.e., a representation into GL, of a
big ring such that all possible lifts were ‘“hidden” in this representation. If one
knew tha} the representation modulo p were modular, then one could make
another big ring “containing” all the lifts which are attached to modular forms.
The abstract deformation theory then provides us with a homomorphism between
these two rings, and one can try to prove that this is an isomorphism. If so, it
follows that all lifts are modular.

What Wiles proposes to do is very much in this spirit, except that he restricts
himself to lifts that have especially nice properties. He starts with a representation
modulo p, and supposes that it is modular and that it satisfies certain technical
assumptions. Then he considers all possible deformations which “look like they
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could be attached to forms of weight 2,” and gets a deformation ring. Considering
all deformations which are attached to modular forms of weight 2 gives a second
ring (which is closely related to the algebra generated by the Hecke operators, in
fact). Wiles then attempts to prove, using a vast array of recent results, including
ideas of Mazur, Ribet, Faltings, V. Kolyvagin, and M. Flach, that these two rings
are the same.

It is not hard to see that the homomorphism between the two rings we want to
consider is surjective. The difficulty is to prove it is also injective. Wiles reduces
this question to bounding the size of a certain cohomology group. It is here that
the brilliant ideas of Kolyvagin and of Flach come in. About five years ago,
Kolyvagin came up with a very powerful method for controlling the size of certain
cohomology groups, using what he calls “Euler systems” (see [Kol91] and the
survey of the method in [Maz93]). This method seems to be adaptable to any
number of situations, and has been used to prove several important recent results.
The initial breakthrough showing how one could begin to use Kolyvagin’s method
in our context is due to Flach (see [Fla92]), who found a way to construct
something that can be thought of as the beginning of an Euler system applicable to
our situation. Wiles called on all these ideas to construct a “geometric Euler
system” which plays a central role in the argument. (It is at this point that the
current difficulty lies.)

From the bound on the cohomology group one will get a proof that the two
rings are in fact isomorphic. Translated back to the language of representations,
this means that if one starts with a representation modulo p which satisfies Wiles’
technical assumptions (and is modular), then any lift of the kind Wiles considers is
also modular.

3.4 Put it all together.... Assume, then, that one can prove that all lifts of a
modular representation are still modular. Now suppose we have an elliptic curve E
whose representation modulo p we can prove (by some means) to be modular.
Suppose also that this representation satisfies Wiles’ technical assumptions. Then
any lift of this representation is modular. But the p-adic representation pg ,
attached to E is one such lift! It follows that this representation is modular, and
hence that E is modular.

All we need, now, is to prime the pump: we must find a way to decide that the
representation modulo p is modular, and then use that to clinch the issue. What
Wiles does is quite beautiful.

First of all, he takes a semistable elliptic curve, and looks at the Galois
representation modulo 3 attached to this curve. At this point, there are two
possibilities. The representation, as we pointed out above, amounts to an action of
the Galois group on the vector space F; X F;. Now, it may happen that there is a
supspace of that vector space which is invariant under every element of the Galois
group. In that case, one says that the representation is reducible. If not, it is
irreducible.

One has to be just a little more careful, Just as it sometimes happens that a real
matrix has complex eigenvalues, it can happen that the invariant subspace only
exists after we enlarge the base field. We will say a representation is absolutely
irreducible when this does not happen: even over bigger fields, there is no invariant
subspace.

Well, look at pj ;. It may or may not be absolutely irreducible. If it is, Wiles
calls upon a famous theorem of J. Tunnell, based on work of R.P. Langlands (see
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[Tun81], [Lan80]) to show that it is modular, and hence, using the deformation
theory, that the curve is modular.

If pg 5 is not absolutely irreducible, Wiles shows that there is another elliptic
curve which has the same representation modulo 5 as our initial curve, but whose
representation modulo 3 is absolutely irreducible. By the first case, it is modular.
Hence, its representation modulo 5 is modular. But since this is the same as the
representation modulo 5 attached to our original curve, we can apply the deforma-
tion theory for p = 5 to conclude that our original curve is modular.

If Wiles’ strategy is successful, we get:

Theorem 2. The Shimura-Taniyama-Weil conjecture holds for any semistable elliptic
curve.

And, since the Frey curve is semistable,

Corollary 1. For any n > 3, there are no non-zero integer solutions to the equation
x" 4+ y"=2z"

Of course, this is just one corollary of the proof of the STW conjecture for
semistable curves, and it is certain that there will be many others still. For
example, as Serre pointed out in [Ser87b], one can apply Frey’s ideas to many
other diophantine equations that are just as hard to handle as Fermat’s. These are
equations that are closely related to the Fermat equation, of the form

xP +y? = Mz?,

where p is a prime number and M is some integer. From Serre’s argument and
Wiles’ result, one gets something like this:

Corollary 2. Let p be a prime number, and let M be a power of one of the following
primes:

3,5,7,11,13,17, 19,23, 29, 53, 59.

Suppose that p > 11 and that p does not divide M. Then there are no nonzero integer
solutions of the equation x? + y? = Mz”.

The proof is precisely parallel to what we have done before: given a solution,
construct a Frey curve, and consider the resulting modular form. Apply Ribet’s
theorem to lower its level, and then study the space of modular forms of that level
to see if the form predicted by Ribet is there. If there is no such form, there can be
no solution. .

In fact, one can even get a general result, as Mazur pointed out:

Corollary 3. Let M be a power of a prime number ¢, and assume that ¢ is not of
the form 2" + 1. Then there exists a constant C, such that the equation x? + y? =
Mz? has no nonzero solutions for any p > C,.

However successful they may be in the end at proving the Shimura-Taniyama-
Weil conjecture, Wiles’ new ideas are certain to have enormous impact.
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