MAT211 – Linear Spaces

- Definition
- Examples
- Subspaces
- ·Span, linear independence, basis, coordinates
- Coordinate transformation
- Dimension

A *linear (or vector) space* V is a set of elements endowed with two operations

- + addition: for each f and g in V, f+g is an element in V.
- . multiplication: For each f in V and each k in R, k.v is an element in V.

Moreover, these operation satisfy the following properties

- (f + g) + h = f + (g + h)
- f + g = g + f
- There exists a unique element in V, denoted by **0** and called the neutral element such that f + 0 = 0 + f = f
- For each f in V there exists a unique element in V denoted by -f such that f+(-f)=0.
- k. (f + g) = k.f + k.g
- (c + k). f = c. f + k. f
- c.(k.f) = (c.k).f
- 1.f=f

EXAMPLES of Linear Spaces:

- Rⁿ.
- The set of all polynomials.
- The set of all polynomials of degree at most two.
- The set of all infinite sequences of real numbers.
- The set of all m x n matrices
- The space of 2 x 2 matrices a b С

d

Questions: In each of the linear spaces

- give examples of + and .
- What is 0?
- If v is in the linear space, what is -v?

such that a+d=0

A linear (or vector) space V is a set of elements endowed with two operations

- + addition: for each f and g in V, f+g is an element in V.
- . multiplication: For each f in V and each k in R, k.v is an element in V.

- We say that an element f of a linear space V is a *linear* <u>combination</u> of the elements f₁, f₂,...,f_n of V if there exists scalars such that
- $f = c_1 f_1 + c_2 f_2 + ... + c_n f_n$
- If V is the space of 2 x 2 matrices such that a+d=0, show that

-2 -2

is a linear combination of

Is the polynomial $x^2 + x + 1$ a linear combination of $x^2 + 1$, x^2 -1 and 3x+3?

A subset W of a linear space V is a *subspace* if

- 0 is in W (0 is the "zero vector" in V).
- If f and g are in W, so is f+g.
- If f is in W and k is a scalar then k.f is in W.

Let V be the space all of 2 x 2 matrices

Show that subset W of all the matrices such that a+d=0 is a subspace of V.

EXAMPLES

- Is the set of all 2 x 2 invertible matrices a subspace of the linear space formed by all 2 x 2 matrices?
- Denote by P₄ the set of all polynomials of degree at most 4. Is P₂ a subspace of P₄?
- Is the subset of all polynomials of degree 2 a subset of P4?

Consider the elements f_1 , f_2 ,..., f_n in a linear space V

- $f_1, f_2,...,f_n$ $\underbrace{span\ V}$ if every element in V is a linear combination of the elements $f_1, f_2,...,f_n$.
- f_i is $\underline{\textit{redundant}}$ if it a linear combination of t $f_1, f_2, ..., f_{i-1}$
- f_1 , f_2 ,..., f_n are $\underline{\textit{linearly independent}}$ if none of them is redundant.
- f₁, f₂,...,f_n form a <u>basis</u> if they are linearly independent and span V.

Example: Consider the linear space M of all matrices 2x3.

- a. Find elments f_1 , f_2 ,..., f_n in M that span M
- b. Find a basis of M.
- c. Can you find a basis of M that does not span?
- d. Can you find a subset of M that spans but it is not a basis? If so, indicate the redundant vectors.

Theorem: If a basis of a vector space has n elements then all basis of a linear space have the n elements.

Definition: If a linear space V has a basis with n elements we say that the dimension of V is $\boldsymbol{n}.$

EXAMPLE: Find a basis and determine the dimension

- The linear space of all 2 x 2 matrices.
- The space of all 2 x 2 matrices such that a+d=0.
- P₂, the space of all polynomials of degree at most 2.
- The space of all polynomials.
- The space of all 2 x 2 matrices that commute with

0 I I I Suppose that the elements f_1 , f_2 ,..., f_n are a basis of a vector space V.

- * Any element f in V can be written as c_1 f_1 + c_2 f_2 +... + c_n f_n for some scalars c_1 , c_2 ,..., c_n
- * The coefficients c_1 , c_2 ,..., c_n are called the <u>coordinates of f with respect to the basis B</u>= $(f_1, f_2,...,f_n)$
- * The vector $[c_1,c_2\,,_{\cdots}\,,c_n]$ in R^n is called the $\underline{\it coordinate\ vector}$ of f and denoted by $[f]_B.$
- The transformation L: V -> Rⁿ, defined by L(f)=[f] is a linear transformation called the <u>B-coordinate transformation</u>.
 - Find two different bases of P₂.
- Find the coordinates of the polynomial (x-1)(x+1) with respect to each of these two bases.

Decribe the B-coordinate transformation L:P2->R^n, where B is the basis $(1,x,x^2)$

If f=(x-1)(x+1) and $g=x^2-3x+\pi$, check that

- L(f+g)=L(f)+L(g)
- L(k.f)=k.L(f).