MAT211 Lecture 14 - Orthogonal projections and orthogonal basis - · Orthogonality, length, unit vectors - · Orthonormal vectors: definition and properties - Orthogonal projections: definition, formula and properties. - Orthogonal complements - Pythagorean theorem, Cauchy inequality, angle between two vectors - $^{\bullet}\,$ A vector v in R^n is orthogonal to a subspace V of R^n if it is orthogonal to all vectors in V - If (b₁,b₂,..,b_m) is a basis of V, then v is orthogonal to V if (and only if) v is orthogonal to b₁,b₂,.. and b_m. ## Example - Consider the subspace V of R³ span by (1,1,1) and (1,0,1). - Find all the vectors orthogonal to V. - Two vectors u and v in Rⁿ are <u>perpendicular or orthogonal</u> if u.v=0 - The length of a vector v in R^n is $||v|| = \sqrt{v \cdot v}$ - A vector v in Rⁿ is called a <u>unit vector</u> if ||v||=1 ## Example - Find a unit vector in the line spanned by (1,1,3) - Find a vector of length 2 orthogonal to (1,1,3) The vectors u_1 , u_2 , ... u_m of R^n are called orthonormal if they are all unit vectors and are orthogonal to one another. In symbols $(u_i,u_j)=0$ if $i\neq j$ $(u_i,u_j)=0$ if $i \neq (u_i,u_i)=1$ Example: Find an orthonormal basis of the subspace of R^3 of equation x+y+z=0. - Orthonormal vectors are linearly independent. - A set of n orthonormal vectors in Rⁿ form a basis. Consider the vectors $v_1=(1/\sqrt{2})(1,0,1)$, $V_2=(0,1,0)$, $v_3=(1/\sqrt{2})(1,0,-1,)$. - Check that v₁, v₂ and v₃ and orthonormal. - Are they linearly independent? - Consider V a subspace of Rⁿ. The <u>orthogonal complement V[⊥] of V</u> is the set of vectors x of Rⁿ that are orthogonal to all vectors in V. - * In other words V^{\perp} is the kernel of the linear transformation projv If V is a subspace of R^n - The orthogonal complement of V is a subspace of Rⁿ - V ∩ V[⊥] ={0} - dim(V)+dim(V[⊥])=n - (V[⊥])[⊥]=V - Find the orthogonal complement V where V is the subspace of R³ of equation x+y+z=0. - Let V be a subspace of Rⁿ and let x be a vector Rⁿ. Then there exists unique vectors x[⊥] and x^{||} such that - $x = x^{||} + x^{\perp}$ - x^{||} in V - x^{\(\preceq\)} is orthogonal to V. - $^{\circ}$ If V us a subspace of R^n with orthonormal basis (b1,b2,...,bm) then $proj_{V}(x){=}(b_{1}.x)\;b_{1+}\;(b_{2}.x)\;b_{2+...}\;(b_{m}.x)\;b_{m}$ - In particular if V= Rⁿ $$x=(b_1.x) b_{1+} (b_2.x) b_{2+...} (b_n.x) b_n$$ - Find the orthogonal projection of (1,2,3) onto the subspace of R³ of equation x+y+z=0. - * Write (1,2,3) as a linear combination of the vectors $v_1 = (1/\sqrt{2})(1,0,1)$, $v_2 = (0,1,0)$, $v_3 = (1/\sqrt{2})(1,0,-1,)$. Theorem: Consider two vectors x and y in Rⁿ - ||x+y||²=||x||² +||y||² if an only if x and y are orthogonal (Pythagorean theorem) - If V is a subspace of Rⁿ then ||p $||\operatorname{proj}_{\vee}(x)|| \leq ||x||$ Cauchy-Schwarz Inequality: $|x.y| \le ||x||.||y||.$ - Consider two non-zero vectors x and y in Rⁿ. The angle θ between these two vectors is defined as arc cos(x.y/||x||.|| y||). - Find the angle between the vectors x=(1,1,1) and (1,0,1).