MAT211 Lecture 14

- Orthogonal projections and orthogonal basis
- · Orthogonality, length, unit vectors
- · Orthonormal vectors: definition and properties
- Orthogonal projections: definition, formula and properties.
- Orthogonal complements
- Pythagorean theorem, Cauchy inequality, angle between two vectors

- $^{\bullet}\,$ A vector v in R^n is orthogonal to a subspace V of R^n if it is orthogonal to all vectors in V
- If (b₁,b₂,..,b_m) is a basis of V, then v is orthogonal to V if (and only if) v is orthogonal to b₁,b₂,.. and b_m.

Example

- Consider the subspace V of R³ span by (1,1,1) and (1,0,1).
- Find all the vectors orthogonal to V.

- Two vectors u and v in Rⁿ are <u>perpendicular or orthogonal</u> if u.v=0
- The length of a vector v in R^n is $||v|| = \sqrt{v \cdot v}$
- A vector v in Rⁿ is called a <u>unit vector</u> if ||v||=1

Example

- Find a unit vector in the line spanned by (1,1,3)
- Find a vector of length 2 orthogonal to (1,1,3)

The vectors u_1 , u_2 , ... u_m of R^n are called orthonormal if they are all unit vectors and are orthogonal to one another. In symbols $(u_i,u_j)=0$ if $i\neq j$

 $(u_i,u_j)=0$ if $i \neq (u_i,u_i)=1$

Example: Find an orthonormal basis of the subspace of R^3 of equation x+y+z=0.

- Orthonormal vectors are linearly independent.
- A set of n orthonormal vectors in Rⁿ form a basis.

Consider the vectors $v_1=(1/\sqrt{2})(1,0,1)$, $V_2=(0,1,0)$, $v_3=(1/\sqrt{2})(1,0,-1,)$.

- Check that v₁, v₂ and v₃ and orthonormal.
- Are they linearly independent?

- Consider V a subspace of Rⁿ. The <u>orthogonal complement V[⊥] of V</u> is the set of vectors x of Rⁿ that are orthogonal to all vectors in V.
- * In other words V^{\perp} is the kernel of the linear transformation projv If V is a subspace of R^n
- The orthogonal complement of V is a subspace of Rⁿ
- V ∩ V[⊥] ={0}
- dim(V)+dim(V[⊥])=n
- (V[⊥])[⊥]=V
 - Find the orthogonal complement V where V is the subspace of R³ of equation x+y+z=0.

- Let V be a subspace of Rⁿ and let x be a vector Rⁿ. Then there exists unique vectors x[⊥] and x^{||} such that
- $x = x^{||} + x^{\perp}$
- x^{||} in V
- x^{\(\preceq\)} is orthogonal to V.
- $^{\circ}$ If V us a subspace of R^n with orthonormal basis (b1,b2,...,bm) then $proj_{V}(x){=}(b_{1}.x)\;b_{1+}\;(b_{2}.x)\;b_{2+...}\;(b_{m}.x)\;b_{m}$
- In particular if V= Rⁿ

$$x=(b_1.x) b_{1+} (b_2.x) b_{2+...} (b_n.x) b_n$$

- Find the orthogonal projection of (1,2,3) onto the subspace of R³ of equation x+y+z=0.
- * Write (1,2,3) as a linear combination of the vectors $v_1 = (1/\sqrt{2})(1,0,1)$, $v_2 = (0,1,0)$, $v_3 = (1/\sqrt{2})(1,0,-1,)$.

Theorem: Consider two vectors x and y in Rⁿ

- ||x+y||²=||x||² +||y||² if an only if x and y are orthogonal (Pythagorean theorem)
- If V is a subspace of Rⁿ then ||p

 $||\operatorname{proj}_{\vee}(x)|| \leq ||x||$

Cauchy-Schwarz Inequality:

 $|x.y| \le ||x||.||y||.$

- Consider two non-zero vectors x and y in Rⁿ. The angle θ between these two vectors is defined as arc cos(x.y/||x||.|| y||).
- Find the angle between the vectors x=(1,1,1) and (1,0,1).