MAT 132 - Final topics- Fall 2006

Integration

- 1. Substitution rule.
- 2. Integration by parts
- 3. Additional techniques of integration:
 - (a) Trigonometric integrals (example $\int \cos^4(x) dx$)
 - (b) Trigonometric substitution (example: solve the integral $\int \sqrt{9-x^2} dx$ using the substitution x=3 sin(u))
 - (c) Partial fractions. (It will be possible to solve these problems without long division of polynomials)
- 4. Approximate integration
 - (a) Midpoint rule.(We will not ask to compute errors)
 - (b) Trapezoidal rule.(We will not ask to compute errors)

Application of Integration

- 5. Area between curves
- 6. Volumes (It will be possible to solve these type of problems with the "disk method")
- 7. Arc length: Find the arc length of curves which are one of the following types
 - (a) graph of functions
 - (b) parametric
- 8. Average value of a function
- 9. Applications to physics and engineering: Only spring problems Differential equations
- 10. Definition, initial conditions
- 11. Direction fields

- 12. Separable equations
- 13. Exponential growth: Only radioactive decay.
- 14. Second order linear homogenous equations (From the notes) Sequences and series
- 15. Sequences (convergence, sum, multiplication, bounded, decreasing, increasing). Monotonic sequence theorem.
- 16. Series: Convergence and divergence Important series to remember (and know when they are convergent or divergent)
 - (a) Geometric $\sum ar^n$
 - (b) *p*-series $\sum \frac{1}{n^p}$ (A particular example is the harmonic series)
- 17. Tests and theorems for convergence and divergence of series
 - (a) Adding two series an multiplying a series by a constant.
 - (b) If $a_n \not\rightarrow 0$ then $\sum a_n$ divergent.
 - (c) Comparison test and limit comparison test
 - (d) Alternating series test
 - (e) If a series is absolutely convergent then it is convergent.
 - (f) The ratio test.
- 18. Power series: radius and interval of convergence. (Review of absolute value might be useful)
- 19. Representation of functions as power series (Write $\frac{1}{1-x}$ as a power series, differentiating and integrating a power series.)
- 20. Taylor and Maclaurin Series