Second order differential equations

the differential equation.

MAT 132

A *differential equation* is an equation in which the unknown is a function and where one or more of the derivatives of this function appears. In other words, it is an equation that relates a function with one or more of its derivatives.

 Differential equation Example

The order of the highest
order derivative of the
unknown function is called
the *order* of the differential
equation.y'' + y =
Some solut
 $y = \cos x, y =$
The family
 $y = A \cos x$

y'' + y = 0Some solutions of the example: $y=\cos x, y=\sin x \text{ and } y=\cos x - 3 \sin x.$ The family of solutions $y=A\cos x + B\sin x, \text{ where } A \text{ and } B \text{ are two constants.}$

A *solution* of a differential equation is any function that when substituted for the unknown function makes the equation an identity for all values of the variable in some interval.

The family of *family of solutions of a differential equation* the collection of all solutions of the differential equation.

	A second order linear differential equation with constant oefficients is an equation is a differential equation of the form A y'' + B y' + C y = f(x), where A, B and C are arbitrary constants and $A \neq 0$. A special case is the differential equation $A y'' + B y' + C y = 0$, which is called <i>homogeneous</i> second order linear differential				
	equation with constant coefficients.				
 second order " linear unknowns are only added (Compare to linear equation A x + B y =C) constant coefficients A,B, C are constants. homogeneous f(x)=0 for all x. 		Example of a second order linear differential equation with constant coefficients $y''+y=0$ Some solutions of the example: $y=\cos x$, $y=\sin x$ and $y=\cos x - 3 \sin x$. General solution (family of solutions) $y=c_1 \cos x + c_2 \sin x$, where c_1 and c_2 are two constants.			
The <i>general solution of a differential</i> How do we find the <i>equation</i> is the family of all solutions of general solution of a					

Two important theorems about the solution of second order linear differential equation with constant coefficients

If If y_1 and y_2 are both solutions of the equation A y'' + B y' + C y = 0and c_1 and c_2 are any two constants, then $c_1 y_1 + c_2 y_2$ is also a solution of A y'' + B y' + C y = 0.

If If y_1 and y_2 are linearly y'' + y = 0.Example independent (that is, one is not Two linearly independent multiple of the other) solutions of <u>solutions</u>: $y = \cos x$, $y = \sin x$. the equation General solution (family of A y'' + B y' + C y = 0solutions) then all solutions can be written as $y = c_1 \cos x + c_2 \sin x,$ $c_1 y_1 + c_2 y_2$ where c_1 and c_2 are two for two constants c_1 and c_2 . constants.

1. $y'' - 5 y' + 6y = 0$. 2. $y'' - 4 y' + 4y = 0$. 3. $y'' - 4 y = 0$. 4. $9y'' + 1 = 0$ 5. $y'' + 3 y' + 3 y = 0$. Find the roots of the characteristic equation in each of the above cases.	The equation $\mathbf{A} \mathbf{x}^2 + \mathbf{B} \mathbf{x} + \mathbf{C} = 0$ is the characteristic equation associated to the differential equation $\mathbf{A} \mathbf{y}'' + \mathbf{B} \mathbf{y}' + \mathbf{C} \mathbf{y} = 0$	
---	--	--

Case I: Characteristic equation with different (real) roots

$\underline{\text{Example}} \text{y''- 5 y'+ 6y = 0.}$					
Find all solutions of the above equation, that can be written as					
$y = c_1 e^{rx}$,					
where r is a real number.					
If If y_1 and y_2 are linearly independent	If the roots r_1 and r_2 of the				
(that is, one is not a multiple of the	characteristic equation				
other) solutions of the equation	$\mathbf{A} \mathbf{x}^2 + \mathbf{B} \mathbf{x} + \mathbf{C} = 0$				
$\mathbf{A} \mathbf{y}'' + \mathbf{B} \mathbf{y}' + \mathbf{C} \mathbf{y} = 0$	are real and different the $e^{r_1 x}$ and $e^{r_2 x}$				
then all solutions can be written as	are linearly independent solutions of				
$c_1 v_1 + c_2 v_2$	the equation				
for two constants c_1 and c_2 .	$\mathbf{A} \mathbf{y}'' + \mathbf{B} \mathbf{y}' + \mathbf{C} \mathbf{y} = 0.$				
f_{1} and r_{2} are different (real) solutions of the characteristic equation					
$\mathbf{x}^2 + \mathbf{B}\mathbf{x} + \mathbf{C} = 0$ then the general solution of $\mathbf{A}\mathbf{y}'' + \mathbf{B}\mathbf{y}' + \mathbf{C}\mathbf{y} = 0$					
$s = c_1 e^{r_1 x} + c_2 e^{r_2 x}$, where c_1 and c_2 are two constants.					

Case I: Characteristic equation with different (real) roots 1. y'' - 5 y' + 6y = 0. The equation 2.y'' - 4y' + 4y = 0. $A x^2 + B x + C = 0$ 3. y'' - 4y = 0. is the characteristic equation 4.9y"+1=0 associated to the differential 5.y''+3y'+3y=0.equation Find all solutions of each $\mathbf{A} \mathbf{y}'' + \mathbf{B} \mathbf{y}' + \mathbf{C} \mathbf{y} = \mathbf{0}$ of the above equations. If r_1 and r_2 are different (real) solutions of the characteristic equation **A** $x^2 + B x + C = 0$ then the general solution of $\mathbf{A} \mathbf{y}'' + \mathbf{B} \mathbf{y}' + \mathbf{C} \mathbf{y} = 0$ is $y = c_1 e^{r_{1x}} + c_2 e^{r_{2x}}$, where c_1 and c_2 are two constants.

Case II: Characteristic equa	ation with repeated roots	
<u>Example</u> Find all solutions of the e y''- 4 y'+	equation $4y = 0.$	
If If y_1 and y_2 are linearly independent (that is, one is not multiple of the other) solutions of the equation A $y'' + \mathbf{B} y' + \mathbf{C} y = 0$ then all solutions can be written as $c_1 y_1 + c_2 y_2$ for two constants c_1 and c_2 .	If the characteristic equation $\mathbf{A} x^2 + \mathbf{B} x + \mathbf{C} = 0$ has only one real root r then $e^{r \times}$ and $x e^{r \times}$ are linearly independent solutions of the equation $\mathbf{A} y'' + \mathbf{B} y' + \mathbf{C} y = 0.$	
If the characteristic equation $\mathbf{A} \mathbf{x}^2 + \mathbf{B} \mathbf{x} + \mathbf{C} = 0$ has only one real root then the general solution of $\mathbf{A} \mathbf{y}'' + \mathbf{B} \mathbf{y}' + \mathbf{C} \mathbf{y} = 0$ is is $\mathbf{y} = c_1 e^{\mathbf{r}\mathbf{x}} + c_2 \mathbf{x} e^{\mathbf{r}\mathbf{x}}$, where c_1 and c_2 are two constants.		

Example 1 Find all the solutions of the Example 2 Find all solutio	the equation $y''+3y'+3y=0$. equation $9y''+1=0$.	
If If y_1 and y_2 are linearly independent (that is, one is not multiple of the other) solutions of the equation A $y'' + \mathbf{B} y' + \mathbf{C} y = 0$ then all solutions can be written as $c_1 y_1 + c_2 y_2$ for two constants c_1 and c_2 .	equation $\mathbf{A} \ \mathbf{x}^2 + \mathbf{B} \ \mathbf{x} + \mathbf{C} = 0$ are the complex numbers $\mathbf{r}_1 = \alpha + i\beta$ and $\mathbf{r}_2 = \alpha - i\beta$ then $e^{\alpha_x} \cos(\beta x)$ and $e^{\alpha_x} \sin(\beta x)$ are linearly independent solutions of the equation $\mathbf{A} \ \mathbf{y}'' + \mathbf{B} \ \mathbf{y}' + \mathbf{C} \ \mathbf{y} = 0.$	
If the roots of the characteristic equation $\mathbf{A} \mathbf{x}^2 + \mathbf{B} \mathbf{x} + \mathbf{C} = 0$ are the complex numbers $\mathbf{r}_1 = \alpha + i\beta$ and $\mathbf{r}_2 = \alpha - i\beta$ then the general solution of $\mathbf{A} \mathbf{y}'' + \mathbf{B} \mathbf{y}' + \mathbf{C} \mathbf{y} = 0$ is $\mathbf{y} = e^{\alpha \mathbf{x}} (c_1 \cos(\beta \mathbf{x}) + c_2 \sin(\beta \mathbf{x}))$		

is where c_1 and c_2 are two constants.

Solving initial value problems

- 1.Solve the initial-value problem y'' + 2 y' + y=0, y(0)=1, y(1)=3.
- 2.2y"+5y+3y=0, y(0)=3, y'(0)=-4.