Second order differential equations

A second order linear differential equation with constant coefficients is an equation is a differential equation of the form A $y^{\prime \prime}+$ B y' $+C y=f(x)$, where A, B and C are arbitrary constants and $\mathrm{A} \neq 0$.
A special case is the differential equation $\mathrm{A} \mathrm{y}^{\prime \prime}+\mathrm{B} \mathrm{y}^{\prime}+\mathrm{C} y=0$, which is called homogeneous second order linear differential equation with constant coefficients.

- second order " Example of a second order linear differential
- linear unknowns are only added (Compare to linear equation $\mathrm{Ax}+\mathrm{By}=\mathrm{C}$)
- constant coefficients $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are constants.
- homogeneous $\mathrm{f}(\mathrm{x})=0$ for all x . constants.

The general solution of a differential equation is the family of all solutions of the differential equation.
equation with constant coefficients $\quad y^{\prime \prime}+y=0$ Some solutions of the example: $y=\cos x, y=\sin x$ and $y=\cos x-3 \sin x$.
General solution (family of solutions) $y=c_{1} \cos x+c_{2} \sin x$, where c_{1} and c_{2} are two

A differential equation is an equation in which the unknown is a function and where one or more of the derivatives of this function appears. In other words, it is an equation that relates a function with one or more of its derivatives.

The order of the highest order derivative of the unknown function is called the order of the differential equation.

Differential equation Example

$$
y^{\prime \prime}+y=0
$$

Some solutions of the example:
$y=\cos x, y=\sin x$ and $y=\cos x-3 \sin x$.
The family of solutions
$y=A \cos x+B \sin x$, where A and B are
two constants.

A solution of a differential equation is any function that when substituted for the unknown function makes the equation an identity for all values of the variable in some interval.
The family of family of solutions of a differential equation the collection of all solutions of the differential equation.

Two important theorems about the solution of second order linear differential equation with constant coefficients
If If y_{1} and y_{2} are both solutions of the equation

$$
\mathrm{A} \mathrm{y}^{\prime \prime}+\mathrm{B} \mathrm{y}^{\prime}+\mathrm{C} y=0
$$

and c_{1} and c_{2} are any two constants, then

$$
\mathrm{c}_{1} \mathrm{y}_{1}+\mathrm{c}_{2} \mathrm{y}_{2}
$$

is also a solution of $\mathrm{A} \mathrm{y}^{\prime \prime}+\mathrm{B} \mathrm{y}^{\prime}+\mathrm{C} y=0$.

Example $y^{\prime \prime}+y=0$.

Two linearly independent
solutions: $y=\cos x, y=\sin x$.
General solution (family of solutions)
$y=c_{1} \cos x+c_{2} \sin x$,
where c_{1} and c_{2} are two
constants.

If If y_{1} and y_{2} are linearly independent (that is, one is not multiple of the other) solutions of the equation

$$
A y^{\prime \prime}+B y^{\prime}+C y=0
$$

then all solutions can be written as
$c_{1} y_{1}+c_{2} y_{2}$
for two constants c_{1} and c_{2}.

More about the solution of second order linear differential equation with constant coefficients

1. $y^{\prime \prime}-5 y^{\prime}+6 y=0$.
2. $y^{\prime \prime}-4 y^{\prime}+4 y=0$.
3. $y^{\prime \prime}-4 y=0$.
4. $9 y^{\prime \prime}+1=0$
5. $y^{\prime \prime}+3 y^{\prime}+3 y=0$.

Find the roots of the characteristic equation in each of the above cases.

The equation

$$
A x^{2}+B x+C=0
$$

is the characteristic equation associated to the differential equation

$$
A y^{\prime \prime}+B y^{\prime}+C y=0
$$

Case I: Characteristic equation with different (real) roots
Example $\quad y^{\prime \prime}-5 y^{\prime}+6 y=0$.
Find all solutions of the above equation, that can be written as

$$
\mathrm{y}=\mathrm{c}_{1} \mathrm{e}^{\mathrm{rx}},
$$

where r is a real number.

If If y_{1} and y_{2} are linearly independent	If the roots r_{1} and r_{2} of the characteristic equation
(that is, one is not a multiple of the	$A x^{2}+B x+C=0$

other) solutions of the equation

$$
A y^{\prime \prime}+B y^{\prime}+C y=0
$$

then all solutions can be written as

$$
c_{1} y_{1}+c_{2} y_{2}
$$

for two constants c_{1} and c_{2}.
are real and different the $\mathrm{e}^{\mathrm{r} 1 \mathrm{x}}$ and $\mathrm{e}^{\mathrm{r} 2 \mathrm{x}}$ are linearly independent solutions of the equation

$$
\text { A y } y^{\prime \prime}+\text { B y }+ \text { C y }=0
$$

If r_{1} and r_{2} are different (real) solutions of the characteristic equation $A x^{2}+B x+C=0$ then the general solution of $A y^{\prime \prime}+B y^{\prime}+C y=0$ is $y=c_{1} e^{r 1 x}+c_{2} e^{r 2 x}$, where c_{1} and c_{2} are two constants.

Case II: Characteristic equation with repeated roots

$$
\begin{aligned}
& \text { Example Find all solutions of the equation } \\
& \qquad y^{\prime \prime}-4 y^{\prime}+4 y=0 .
\end{aligned}
$$

If If y_{1} and y_{2} are linearly independent (that is, one is not multiple of the other) solutions of the equation

$$
A y^{\prime \prime}+B y^{\prime}+C y=0
$$

then all solutions can be written as

$$
c_{1} y_{1}+c_{2} y_{2}
$$

for two constants c_{1} and c_{2}.

If the characteristic equation

$$
A x^{2}+B x+C=0
$$

has only one real root r then
e^{rx} and $\mathrm{xe}^{\mathrm{rx}}$ are linearly independent solutions of the equation
$A y^{\prime \prime}+B y^{\prime}+C y=0$.

If the characteristic equation $\mathbf{A} x^{2}+\mathbf{B x}+\mathbf{C}=0$ has only one real root then the general solution of $A y^{\prime \prime}+B y^{\prime}+C y=0$ is is $y=c_{1} e^{r x}+c_{2} x e^{r x}$, where c_{1} and c_{2} are two constants.
is $y=c_{1} e^{r 1 x}+c_{2} e^{r 2 x}$, where c_{1} and c_{2} are two constants.

Case III: Characteristic equation with complex roots
Example 1 Find all the solutions of the equation $y^{\prime \prime}+3 y^{\prime}+3 y=0$.
Example 2 Find all solutions of the equation $9 y^{\prime \prime}+1=0$.
If If y_{1} and y_{2} are linearly independent (that is, one is not multiple of the other) solutions of the equation

$$
A y^{\prime \prime}+B y^{\prime}+C y=0
$$

then all solutions can be written as

$$
\mathrm{c}_{1} \mathrm{y}_{1}+\mathrm{c}_{2} \mathrm{y}_{2}
$$

for two constants c_{1} and c_{2}.

If the roots of the characteristic

 equation$$
A x^{2}+B x+C=0
$$

are the complex numbers $\mathrm{r}_{1}=\alpha+\mathrm{i} \beta$ and $\mathrm{r}_{2}=\alpha-\mathrm{i} \beta$ then $\mathrm{e}^{\alpha \mathrm{x}} \cos (\beta \mathrm{x})$ and $\mathrm{e}^{\alpha \mathrm{x}}$ $\sin (\beta \mathrm{x})$ are linearly independent solutions of the equation

$$
\mathbf{A} y^{\prime \prime}+\mathbf{B} y^{\prime}+\mathbf{C} y=0
$$

If the roots of the characteristic equation $\mathbf{A} x^{2}+\mathbf{B x}+\mathbf{C}=0$ are the complex numbers $\mathrm{r}_{1}=\alpha+\mathrm{i} \beta$ and $\mathrm{r}_{2}=\alpha-\mathrm{i} \beta$ then the general solution of $A y^{\prime \prime}+B y^{\prime}+C y=0$ is $y=e^{a_{x}}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)$
is where c_{1} and c_{2} are two constants.
equation:

Summary on solving the linear second order homogeneous differential equation
 of the differential equation A y" + B y' + C y $=0$ we consider the characteristic
$A x^{2}+B x+C=0$
Set $\Delta=B^{2}-4 A C$. diferential equation

Solving initial value problems

1. Solve the initial-value problem $y^{\prime \prime}+2 y^{\prime}+y=0, y(0)=1$, $y(1)=3$.
$2.2 y^{\prime \prime}+5 y+3 y=0, y(0)=3, y^{\prime}(0)=-4$.
