MAT |32 Series

8.4 Other convergency tests
Alternating series
Absolutely convergence series
Ratio Test

A series &)

Z(—l)"an
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is called alternating if {a,} is a sequence of positive terms,
thatis a, > 0 for all n.

TWO EXAMPLES
OF ALTERNATING .
SERIES TP E
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If { a, } is a sequence such that
a,>0,

a,za,, ,and

a, —0 when n—
then the series

CONVERGES

In order to check whether a
sequence is decreasing, one can
(-n" 1. compare consecutive terms or

n 2. if the sequence is defined by a
w function, check derivative of the
S (=)' (n+2) functionis negative.
n(n+1)

Study the convergence of the
the series. ic

n=1

n=1
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The 15th partial sum of the series E (—1) —
is -0.824542. In symbols el n

15

1
E (—1)"—2 = —0.824542
n
n=1
Estimate the error in using -0.824542 to approximate the total sum of
the series.

Alternating Series Estimation Theorem If s = = (—1)""'b, is the sum of an alternating
series that satisfies

(i) b1 =< b, and (i) lim b, = 0

then [Ri| = |5 = 5u| < bui
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Definition A series = «, is called absolutely convergent if the series of absolute

values ¥ | a,| is convergent.

E Theorem If a series = a, is absolutely convergent, then it is convergent.
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The Ratio Test
(i) If lim LY L < 1, then the series E a, is absolutely convergent
n—=® 1 dp n=1
(and therefore convergent).
durt | _ o, then the series Y, a,

n=1

Ap+1 .
—L| =L > 1orlim
n
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(ii) If lim
is divergent.

Ap+1 . .. . . .
—— | = 1, the Ratio Test is inconclusive; that is, no conclusion can

(iii) If lim
n—=| a,
be drawn about the convergence or divergence of = a,.

A power series in X is a series that can be expressed as
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8.5 Power Series
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co+ 1T+ cox® + - 4 cpat
The coefficients ¢, ¢4, C,... are constants.

We also use the notation
o

E ent™ = co+ c1x + cox? + -+ cpa

n=0
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A power series in (x-a) is a series that can be expressed as

oo
ch(x—a)x” =cotci(z—a)r+c(r—a)z?+---F+cp(z—a)*---
n=0

The coefficients ¢, ¢, ¢,... are constants.

“a” 1s also a constant.
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Examples

what is the key
question about
infinite series?

@ If we replace “x” by a number, a powers series becomes an
infinite series. Thus, in the case of power series we ask:

Find the values of x for which each of the the power series
below is convergent.
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The Ratio Test

= L < 1, then the series 2 a, is absolutely convergent

n=1

(i) If lim |2t

©
n— a,

(and therefore convergent).

3

= oo, then the series 2 an

n=1

Gi) Tf lim 1| = L > 1 or lim

n—e< | d, n—so

A+

n

is divergent.

An+1

(iii) If lim = 1, the Ratio Test is inconclusive; that is, no conclusion can
n—x a,

be drawn about the convergence or divergence of = a,,.

%

E Theorem For a given power series Y, c,(x — a)" there are only three
possibilities: n=0

(i) The series converges only when x = a.
(ii) The series converges for all x.

(iii) There is a positive number R such that the series converges if |x — a| < R
and diverges if |x — a| > R.
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Which of the possibilities * . ,,Zo 3"
of the theorem above hold z 3x
for each of the power series? 7~ 0




