Compare the following two problems

Find a number x such that x?-3x+1=0
In other words, find a number with certain properties.

Find a function f such that f’(x)=3f(x) for all x in R.
In other words, find a function with certain properties.

f’(x)=3f(x) is an example of a
differential equation

A differential equation is an equation in which the unknown is a
function and where one or more of the derivatives of this function
appears. In other words, it is an equation that relates a function
with one or more of its derivatives.

A solution of a differential equation is any
function that when substituted for the unknown
function f (f(x), y and f in the above examples)
makes the equation an identity for all values of
the variable (x or t in the above examples) in
some interval.

y'=3x"y, y=Ce" , Cisareal number

d’f :
1 =—f, y=acos(t)+bsin(t), aandb are

real numbers

The order of the highest order derivative
of the unknown function is called the
order of the differential equation.

y'=y" +1+sin(x),  order =1,
x is the independent variable
y=y(x) is the dependent variable

2
d{+3t£=t5f order =2,
dt dt

t is the independent variable

f=f(t) is the dependent variable

Adding constrains to a differential equation

» Find a function f such that f’(x)=3f(x) for all x in R and
f(1)=3

» Find a function f such that f”(x)-5f'(x)+6£(x)=0,
£(0)=1,f'(0)=-1.

The constrains above are called e initial
conditions of the differential equation.
These are conditions that the solution
and possibly some of its derivatives
must satisfy.
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the variable (x or t in the above examples) in
some interval.

EXAMPLE

» Which of the following functions are solutions of the
differential equation y”’+y=sin(x)?

a. y =sin(x)

b. y =cos(x)

c. y=xsin(x)/2
d. y=-xcos(x)/2

EXAMPLE: Solve the following differential equations

y'=3, y()=4
y'=3+x, y()=4
y'=y, y(0)=2
y'=xy
xy'=0, y(0)=7
1
W ;y We will study methods to solve some

differential equations. For now, we will use
trial and error.

Mathematical models

* The goal is not to produce an identical copy of the real

object but give a representation of some aspect of the
object.

+ We can make a model by simplifying assumptions and

combining aspects that may or may not belong together.

* Once the model is build, one should compare

predictions of the model with data.
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An elementary model of populat

The number of individuals in a populat

grows at a rate proportional to the size of this population.

Assumption
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Model

Assumption: The number of

individuals in a population grows at
a rate proportional to the size of this

population.

Quantities involved in a model

course)
+ dependent variable (function of the independent

« independent variable (almost always time in our
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Recall Hooke’s Law
k=2
i~
V ls
F #® l,=10in
xr=—101in.
1 =0in.
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Hooke's Law

F(x)=kx

The force that the spring exerts is
F(x)= -kx,
On the other hand, by Newton’s Second Law,
F(x) = m .d2x/dt>

Then
-k.x=m .d>x/dt>
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