

Find the area of the region bounded by the curves in the following cases

$$
\text { 1. } y=x^{2} \text { and } y=-x^{2}+4 . \quad \frac{16 \sqrt{2}}{3}
$$

2. $y^{2}=2 x-2$ and $y=x-5$.

$$
-\frac{8 \sqrt{10}}{3}
$$

Recipe to find the area bounded by curves.
Find intersection points. In most cases, these points will
determine the limits of integration .
Sketch a figure.
Compute the definite integral.
Sometimes you will need to "rotate" the figure $\pi / 2$ (considering x as a function of y)

Find the area between the curves $f(x)=x / 2$ and $g(x)=-x$ on the interval $[1,4]$

Theorem

- Consider two continuous functions $f(x)$ and $g(x)$ both defined on the interval $[\mathrm{a}, \mathrm{b}]$.
- Suppose that $f(x) \geq g(x)$ for all x in $[a, b]$
- Then the area A of the region bounded by the curves $y=f(x)$ and $y=g(x)$ and the lines $x=a$ and $x=b$ is

$$
A=\int_{a}^{b} f(x)-g(x) d x
$$

Area enclosed by parametric curves

Theorem: The are the region bounded by the curve $x=f(t), y=g(t)$, where t in $[\alpha, B]$ and the x-axis is

$$
\int_{\alpha}^{\beta} g(t) f^{\prime}(t) d t
$$

Examples:

1.Find the area enclosed by the x-axis and the curve given by parametric equations $x=1+e^{t}$ and $y=t-t^{2}$.
3.Find the area of the asteroid of equation $x=\cos ^{3}(t), y=\sin ^{3}(t), t$ in $[0,2 \pi]$.
4.Find the area of the ellipse of equation $(x / a)^{2}+(y / b)^{2}=1$ using parametric equations.

$\mathrm{ab} \pi$
26. Two cars, A and B, start side by side and accelerate from rest. The figure shows the graphs of their velocity functions.
(a) Which car is ahead after one minute? Explain.
(b) What is the meaning of the area of the shaded region?
(c) Which car is ahead after two minutes? Explain.
(d) Estimate the time at which the cars are again side by side.

Volumes

R^{3}.

Volumes of solids
Solids of Revolution (a curve rotates about a line.)

Volumes of solids of revolution

- The disk method.
- The washer method
- Cylindrical shell (next class)

29. If the birth rate of a population is $b(t)=2200 e^{0.024!}$ people per year and the death rate is $d(t)=1460 e^{0.01 *_{t}}$ people per year, find the area between these curves for $0 \leqslant t \leqslant 10$. What does this area represent?

Volumes

- $8 \cdot$ To estimate the volume of the loaf of bread, we slice it, find the volume of each slice and add up all those volumes.
-. 8 •The volume of each slice is approximately, the area of the slice multiplied by the height (thickness).

What can be do to get a better estimation?

Denote the cross-sectional area of the solid in the plane perpendicular to the x-axis by A(x).
If A is a continuous
function, then the volume of the solid that lies between $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$ is

Make sure you understand in which direction

A right pyramid 4 ft . high has a square base measuring 1 ft . on a side.

you slice. When you use the formula

$$
\int_{a}^{b} A(x) \mathrm{d} x
$$

this direction is perpendicular to " x "

1.Decompose the solid into small parts, each of which has a volume that can be approximated by an expression of the form $\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right) \Delta \mathrm{x}_{\mathrm{k}}$. Then the total volume
 can be approximated by th expression $\sum_{k=0}^{n} f\left(x_{k}\right) \Delta x_{k}$
2. Show that the approximation becomes better and
better when n goes to infinite and each $\Delta \mathrm{x}_{\mathrm{k}}$ approaches
0. Thus \quad Volume $=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} f\left(x_{k}\right) \Delta x_{k}$
3. Express the above limit as a define integral $\int_{a}^{b} f(x) d x$
4.Evaluate the integral to determine the volume
\qquad

Computing the volume of a solid

Find the volume of the cone obtained
by rotating about the x-axis the
segment of the line $y=0.5 x$ between 0 and 1 .

Solid of revolution - The disk method

Compute the volume of a solid of revolution

A solid of revolution is formed when the region bounded by the curves $y=x^{2}, x=2.5$ and the -axis is rotated about the line $y=2$. Find the volume the method of disks

Solid of revolution - The disk method

Rotating a curve about the x-axis

A typical element of volume is a disk
obtained by revolving about the x -axis a thin rectangle perpendicular to the x-axis of height $|f(x)|$
When this rectangle is rotated about the x axis, it sweeps out a circular disk of volume $\pi(f(x))^{2} d x$

Rotating a curve about the y-axis A typical element of volume is a disk obtained by revolving about the y-axis a thin rectangle perpendicular to the y-axis of height $|g(y)|$
When this rectangle is rotated about the y axis, it sweeps out a circular disk of volume $\pi(g(y))^{2} d y$.

Washers Method

Find the volume of the solid of revolution formed by rotating the region bounded by the x-axis, the curve $x=2$ and the curve $y=x^{2}+2$ about the y-axis.

Find the volume of the solid of revolution formed by rotating the region bounded by the x-axis and the curve $y=x(x-2)$ about the y-axis.

Find the volume of the solid generated by rotating the region of the $x y$-plane bounded by the curves $y=x^{2}$ and $y=x^{1 / 2}$ about the y-axis.

Washer
Generation of Typical washer

Cylindrical shells

Shell method

A typical element of volume is a
cylindrical shell of volume $2 \pi x(f(x)) d x$.

$$
V=\int_{a}^{b} 2 \pi x f(x) d x \quad \pi \int_{a}^{b}\left(g(y)^{2}-f(y)^{2}\right) d y
$$

Generation of Typical washer

Washer Method
A typical element of volume is a a circular disk of volume $\pi\left((f(\mathrm{y}))^{2-}(\mathrm{g}(\mathrm{y}))^{2} \mathrm{dy}\right.$.

1. The region bounded by the curves $y=x^{4}+x$, the x-axis and the line $x=2$ is revolved about the y-axis. Find the volume of the obtained solid. $(80 \pi / 3)$
2. The region bounded by the curves $y=x^{4}+x$, the y-axis and the line $x=2$ is revolved about the y-axis. Find the volume of the obtained solid.
3. Observe that by adding 2 . and 3 you obtain 72π, the volume of the cylinder of height 18 and radius 2 .

Summary

The solids below are obtained by rotating a region of the plane about vertical or horizontal axes. They are called solids of revolution.

$V=\int_{a}^{b} 2 \pi x f(x) d x$
$\pi \int_{a}^{b}\left(g(y)^{2}-f(y)^{2}\right) d y$

We discussed how to find the volume of solids of revolution by the washer method or the cylindrical shell method.

Example

* The region bounded by the curve $y=4-x^{2}$, the x axis and the line $x=2$ is rotated about the x-axis. Find the volume of the solid generated using the disk method and the shell method. Both methods should give the same answer!

13-18 The region enclosed by the given curves is rotated about the specified line. Find the volume of the resulting solid.
13. $y=1 / x, x=1, x=2, y=0 ; \quad$ about the x-axis
14. $x=2 y-y^{2}, x=0 ; \quad$ about the y-axis
15. $x-y=1, y=x^{2}-4 x+3 ;$ about $y=3$
16. $x=y^{2}, x=1 ; \quad$ about $x=1$
17. $y=x^{3}, y=\sqrt{x} ; \quad$ about $x=1$
18. $y=x^{3}, y=\sqrt{x} ; \quad$ about $y=1$

