

Sometimes you will need to "rotate" the figure $\pi/2$ (considering x as a function of y)

- 26. Two cars, A and B, start side by side and accelerate from rest. The figure shows the graphs of their velocity functions.
 - (a) Which car is ahead after one minute? Explain.
 - (b) What is the meaning of the area of the shaded region?
 - (c) Which car is ahead after two minutes? Explain.
 - (d) Estimate the time at which the cars are again side by side.

29. If the birth rate of a population is $b(t) = 2200e^{0.024t}$ people per year and the death rate is $d(t) = 1460e^{0.018t}$ people per year, find the area between these curves for $0 \le t \le 10$. What does this area represent?

Volumes

z

• R³.

- Volumes of solids
- Solids of Revolution (a curve rotates about a line.)
- Volumes of solids of revolution
- The disk method.
- The washer method
- Cylindrical shell (next class)

Volumes

• To estimate the volume of the loaf of bread, we slice it, find the volume of each slice and add up all those volumes.

• The volume of each slice is approximately, the area of the slice multiplied by the height (thickness).

What can be do to get a better estimation?

Computing the volume of a solid

1.Decompose the solid into small parts, each of which has a volume that can be approximated by an expression of the form $f(x_k)\Delta x_k$. Then the total volume can be approximated by th expression $\sum_{k=0}^{n} f(x_k)\Delta x_k$

2.Show that the approximation becomes better and better when n goes to infinite and each Δx_k approaches 0. Thus $Volume = \lim_{n \to \infty} \sum_{k=0}^{n} f(x_k) \Delta x_k$

3. Express the above limit as a define integral $\int_a^b f(x) dx$

4. Evaluate the integral to determine the volume

A right pyramid 4 ft. high has a square base measuring 1 ft. on a side.

Find its volume.

Compute the volume of a solid of revolution

Solid of revolution - The disk method Rotating a curve about the x-axis Rotating a curve about the y-axis A typical *element of volume* is a disk A typical *element of volume* is a disk obtained by revolving about the x-axis a obtained by revolving about the y-axis a thin rectangle perpendicular to the x-axis thin rectangle perpendicular to the y-axis of height |f(x)|of height |g(y)|When this rectangle is rotated about the x-When this rectangle is rotated about the yaxis, it sweeps out a circular disk of axis, it sweeps out a circular disk of volume π (f(x))²dx. volume π (g(y))²dy. Example Example: $f(x)=x^2$ $g(y)=y^{1/2}$

- 2. The region bounded by the curves $y=x^4+x$, the y-axis and the line x=2 is revolved about the y-axis. Find the volume of the obtained solid.
- 3. Observe that by adding 2. and 3 you obtain 72π , the volume of the cylinder of height 18 and radius 2.

Example

* The region bounded by the curve y=4-x², the x axis and the line x=2 is rotated about the x-axis. Find the volume of the solid generated using the disk method and the shell method. Both methods should give the same answer!

13–18 The region enclosed by the given curves is rotated about the specified line. Find the volume of the resulting solid. **13.** y = 1/x, x = 1, x = 2, y = 0; about the x-axis **14.** $x = 2y - y^2$, x = 0; about the y-axis **15.** x - y = 1, $y = x^2 - 4x + 3$; about y = 3 **16.** $x = y^2$, x = 1; about x = 1 **17.** $y = x^3$, $y = \sqrt{x}$; about x = 1**18.** $y = x^3$, $y = \sqrt{x}$; about y = 1