

It is likely that Euclid worked and taught there

About 500,000 volumes

Euclid's Elements Early impact

One of the Oldest Fragment of Euclid's Elements, dated from 1st century CE,

Proposition II.5: If a straight line is cut into equal and unequal segments, the rectangle contained by the
unequal segments of the whole, together with the square
unequal segments of the whole, together with the square
on the straight line between the points of the section, is equal to the square on the half.

Also there are
in potsherds discagments found
BCE and dated from 225
notes These fragments Motes on two propositions from
Book XIII. mentren translation \qquad

The medieval and Renaissance tradition of Euclid's Elements (adapted from Murdoch (1971))
Diagram from the book "Ancient Mathematics" by Serafina Cuomo
http://www.math.ubc.ca/~cass/Euclid/papyrus/

An illumination from a manuscript based on Adelard of Bath's translation of the Elements, circa 1309-1316; Adelard's is the oldest surviving translation of the Elements into Latin, done in the 12th-century work and translated from Arabic. (Wikipedia)

Heath (A History of Greek
Mathematics (2 Vols.) (Oxford, 1921).) writes of Theon's edition of the Elements [2]:-
while making only inconsiderable additions to the content of the "Elements", he endeavoured to remove difficulties that might be felt by learners in studying the book, as a modern editor might do in editing a classical text-book for use in schools; and there is no doubt that his edition was approved by his pupils at Alexandria for whom it was written, as well as by later Greeks who used it almost exclusively...


```
*)
```

The 9th-century Vatican manuscript, Vat. gr. 190 Euclid's work possibly without lajor adulteration (in particular, without Theon's note).

Book I proposition 47
The Pythagorean Theorem

Early Translation of Euclid's Elements into Arabic (1466)

The Italian Jesuit Matteo Ricci（left） and the Chinese mathematician Xu Guangqi（right）published the Chinese edition of Euclid＇s Elements（幾何原本）in 1607. （Wikipedia）

https：／／www．c82．net／euclid／

Euclid＇s element＇s

were not created
overnight

> were not created by Euclid alone.

Euclid's Elements

Definitions

Postulates and common notions Propositions and constructions

"Euclid alone has looked on Beauty bare." BY EDNA ST. VINCENT MILLAY Euclid alone has looked on Beauty bare.
Let all who prate of Beauty hold their peace,
And lay them prone upon the earth and cease
To ponder on themselves, the while they stare
At nothing, intricately drawn nowhere
In shapes of shifting lineage; let geese
Gabble and hiss, but heroes seek release
From dusty bondage into luminous air.
O blinding hour, O holy, terrible day,
When first the shaft into his vision shone
Of light anatomized! Euclid alone
Has looked on Beauty bare. Fortunate they
Who, though once only and then but far away,
Have heard her massive sandal set on stone.

Definition 1.

A point is that which has no part.
Definition 2.
A line is breadthless length.
Definition 3.
The ends of a line are points.
Definition 4.
A straight line is a line which lies evenly with the points on itself.

First four definitions of Book 1 of Euclid's Elements.

Order the four definitions from easiest to understand to hardest. Hint: If you didn't know what the objects being defined are, would you be able to draw them just from
the definition? Why?

Definition 1: A

point is that which has no part.

Definition 2: A line is breadthless length.

Definition 10: When a straight line standing on a straight line makes the adjacent angles equal to one another, each of the equal angles is right, and the straight line standing on the other is called a perpendicular to that on which it stands.

Definition 15: A circle is a plane figure contained by one line such that all the straight lines falling upon it from one point among those lying within the figure equal one another.

- It has been suggested that the definitions were added to the Elements sometime after Euclid wrote them.
- Another possibility is that they are actually from a different work, perhaps older.

Axioms, postulates and common notions

Common notions

- Things equal to the same thing are also equal to one another.
- And if equal things are added to equal things then the wholes are equal.
- And if equal things are subtracted from equal things then the remainders are equal.
- And things coinciding with one another are equal to one another.
- And the whole [is] greater than the part

Postulates

- Let it have been postulated to draw a straight-line from any point to any point.
- And to produce a finite straight-line continuously in a straightline.
- And to draw a circle with any center and radius.
- And that all right-angles are equal to one another.
- And that if a straight-line falling across two (other) straightlines makes internal angles on the same side (of itself whose sum is) less than two right-angles, then the two (other) straight-lines, being produced to infinity, meet on that side (of the original straight-line) that the (sum of the internal angles) is less than two right-angles (and do not meet on the other side).

Euclid's five postulates

1.A straight line segment can be drawn joining any two points.
2. Any straight line segment can be extended indefinitely in a straight line.
3.Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center.
4. All right angles are congruent.
5.If two lines are drawn which intersect a third in such a way that the sum of the inner angles on one side is less than two right angles, then the two lines intersect each other on that side if extended far enough.

The first four postulates were straightforward; they were considered "truths". (Recall Aristotle's definition: "An axiom is a statement worthy of acceptance.")

The fifth postulate isn't simple or straightforward; it feels more like a proposition or theorem than an axiom.

The structure of the proportions in Euclid's Elements leading to the Pythagorean Theorem (Proposition 47)

The first three postulates in the Elements

- Postulate I asserts that it is possible to draw a segment through any two given points.
- Postulate II says that any segment can be extended to a longer segment.
- Postulate III states that it is possible to construct a circle with any given center and radius.

These first three postulates are associated with the tools that are used to implement them on a piece of paper.

Which tool is each of these postulates associated with? (Select the option with only the essential features)

Postulate 5'. (Playfair)

For any given point not on a given line, there is exactly one line through the point that does not
meet the given line.

Byrne's version
If two ftraight lines ($=$) meet a third frraight line (-) fo as to make the two interior angles (\square and) on the fame fide lefs than two right angles, thefe two ftraight lines will meet if they be produced on that fide on which the angles are lefs than two right
 angles.

Postulate 5.

That, if a straight line falling on two straight lines makes the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles.

Definition 15: A circle is a plane figure contained by one line such that all the straight lines falling upon it from one point among those lying within the figure equal one another.

Postulate 4 states

"That all right angles are equal one another." Isn't it true that all right angles are equal to each other? Why does it have to be a postulate? In other words, why it cannot be assumed?

Postulate 4.

That all right angles equal one another.

Euclid's Elements

Postulates

1. Let it have been postulated ${ }^{\dagger}$ to draw a straight-line from any point to any point.
2. And to produce a finite straight-line continuously
in a straight-line.
3. And to draw a circle with any center and radius.
4. And that all right-angles are equal to one another.
5. And that if a straight-line falling across two (other) (of itself whose sum is) less than two right-angles, then the two (other) straight-lines, being produced to infinity, meet on that side (of the original straight-line) that the
(sum of the internal angles) is less than two rightangles sum the inter angs) is less than two right-angles (and do not meet on the other side).

Common Notions

1. Things equal to the same thing are also equal to one another.
2. And if equal things are added to equal things then he wholes are equal.
3. And if equal things are subtracted from equal things hen the remainders are equal. ${ }^{\dagger}$
4. And things coinciding with one another are equal
5. And the whole [is] greater than the par

- Each book starts with a list of definitions of the mathematical terms which will be used in that book.
- After the definitions in Book I there are five "postulates" and five "common notions."
Most of Euclid's postulates are simple statements of intuitively obvious facts about plane and space.
- The common notions are also intuitively obvious facts, most of them about properties of equality. These common notions are not specific to geometry

We are going to refer to the whole set of assumptions (postulates together of assumption (wotions) as axioms with common notions
Δ You
what is an axiom?

ChatcPT
An axiom is a statement considered self-evidently true without needing proof.
(3) You

Is an axiom true in mathematics?

- ChatGP

Yes, an axiom is considered true within the context of mathematics.

2 You
NO!
© ChatGPT
Yes, that's correct. My apologies for the oversight. Axioms are assumptions or postulates that are accepted as true without requiring proof within a particular mathematical system or framework. They serve as the foundation upon which $\underset{\downarrow}{\text { mathematical theories are built. Thank you for the }}$ correction!

Euclid's elements

Definitions

Common notions
Postulates
(self evident truths)

Propositions
Constructions

Today's math

Undefined terms
Definitions

Axioms

(assumptions wisely chosen)

Propositions
Constructions
To draw a straight line from any point to any point.

Postulate 2. | To produce a finite straight line continuously in a |
| ---: |
| straight line. |
| Postulate 3. |

That, if a straight line falling on two straight lines wakes the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles.

Recall that Euclid's Elements start with ten axioms (five postulates and five common notions). Ten is not a large number. Is that important? Would it be better to have less or more axioms? Explain the reasons for our answer.

Compare the Postulates and the Common Notions, how do they differ? What do the Postulates have in common with each other? What do the Common Notions have in common with each other?

[^0]
Construction of an equilateral triangle

Let's concentrate in understand the steps of the proof first, and later, let's try to achieve a more global understanding

Proof of Proposition I of Euclid's Elements
Author Moria Chas
https://www.geogebra.org/classroom/z6ecau5x Geogebra Classroom Code. Z6EC AU5X

1. On the Geogebra window (above this text) make the construction of an equilateral triangle by following the instructions.
2. Explain why the triangle you constructed is equilateral (in complete sentences, in Wooclap)
3. (If you have time) Compare the instructions given in 1. with this one, which is a translation of the original Euclid's Element. What are the differences?)

Are you sure that the two circles Proposition 1: To construct an equilateral always intersect? Why?
triangle on a given finite straight-line
First part of the proof: describe the construction
(1) Let $A B$ be the given line.
(2) Draw a circle, center A, distance AB. [Post. 3]

- Draw a circle, center B distance $A B$. [Post. 3]
- Let C be a point where the circles intersect.
- Draw straight lines $A C$ and $B C$. [Post. 1]
$A B C$ is the required triangle.
Iext and figure by Patrick Maher
Postulates

1. Let it have been postulated ${ }^{\dagger}$ to draw a straight-line 1. Let it have been postulated to draw a straight-ine
from any point to any point.
2. And to produce a finite straight-line continuously
in a straight-line.
3. And to draw
4. And that all right-a with any center and radius. 4. And that all right-angles are equal to one another. 5. And that if a straight-line falling across two (other)
straight-lines makes internal angles on the same side straight-lines makes internal angles on the same side
(of itself whose sum is) less than two right-angles, then (of itself whose sum is) less than two right-angles, the
the two (other) straight-lines, being produced to infinity meet on that side (of the original straight-line) that the (sum of the internal angless is less than two right-angles (and do not meet on the other side). ${ }^{\ddagger}$

Def 15. A circle is a plane figure contained by a single line [which is called a circumference], (such that) all of the
straight-lines radiating towards [the circumference] from one point amongst those lying inside the figure are equal

Common Notions

1. Things equal to the same thing are also equal to one another.
2. And if equal things are added to equal things then he wholes are equal.
3. And if equal things are subtracted from equal things
then the remainders are equal.
4. And things coinciding w
5. And things coinciding with one another are equal
oo one another.
6. And the w
7. And the whole [is] greater than the part

Translation by R. Fitzpatrick
Task 1

Euclid's Elements

Proposition I:To construct an equilateral triangle

 on a given finite straight-lineLet $A B$ be the given finite straight line.

Direct translation of the proof

It is required to construct an equilateral triangle on the straight line $A B$ Describe the circle $B C D$ with center A and radius $A B$. Again $\frac{\text { IPost } 3}{\text { IPost. } 1}$ describe the circle $A C E$ with center B and radius $B A$. Join the straight lines $C A$ and $C B$ from the point C at which the circles cut one another to the points A and B.
Now, since the point A is the center of the circle $C D B$, therefore $A C$ equals $A B$. Again, since the point B is the center of the circle $C A E$, therefore $B C$ equals $B A$.
But $A C$ was proved equal to $A B$, therefore each of the straight lines $A C$ and $B C$ equals $A B$
And things which equal the same thing also equal one another, therefore $A C$ also equals $B C$
Therefore the three straight lines $A C, A B$, and $B C$ equal one another.
Therefore the triangle $A B C$ is equilateral, and it has been constructed on the given finite straight line $A B$.
Text and figure by David Joyce https://mathcs.clarku.edu/~djoyce/elements/bookl/propl1.html

Postulates		
mit poite ony point		
Stita		
dinat	And	
		20. And of the triateral figures an equilateral trian-
		that having only two equal sides, and a scalene (triangle)

Euclid's Elements

Second part: Prove that the construction does what was required
(0) $A B=A C$ [Def. 15]

- $A B=B C$ [Def. 15]
(-) $A C=B C[C . N .1]$
- Hence $A B C$ is an equilateral triangle [Def. 20] and it is on the given line $A B$. Q.E.F.

Text and figure above by Patrick Maher

 to one another.
gle is in hat of the the triateral figures: an equilateral trian-
 Translation by R. Fitzpatrick

PROPOSITION I. PROBLEM

N a given finite ftraight line (—) to defcribe an equilateral triangle.

Defcribe \circlearrowleft and (poltulate 3.); draw \quad and
 (poft. I.). then will be equilateral.

$$
\begin{aligned}
& \text { For }=\square \text { (def. } 15 .) \text {; } \\
& \text { and }-=\text { (def. } 15 \text {.), } \\
& \therefore \quad=- \text { (axiom. г.); }
\end{aligned}
$$

and therefore \quad is the equilateral triangle required.
Q.E.D. Byrne's Euclid

on a given finite straight-line

(CONT.) And since the point A is the center of the circle CDB, $A C$ is equal to $A B$ [Def. 1.15].

Again, since the point B is the center of the circle CAE, BC is equal to BA [Def. 1.15].

But CA was also shown (to be) equal to $A B$. Thus, $C A$ and $C B$ are each equal to $A B$. But things equal to the same thing are also equal to one another [C.N. 1].
Thus, CA is also equal to CB. Thus, the three (straight- lines) $C A, A B$, and $B C$ are equal to one another.
Thus, the triangle $A B C$ is equilateral, and has been constructed on the given finite straight-line $A B$. (Which is) the very thing it was required to do.

Common Notions 1. Things equal to the same thing another. 2. And if equal things are added to

$$
\begin{aligned}
& \text { 15. A ircle is aplane figre contained by syingel ine }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { one point amonamst those lying inside the figurere are equal } \\
\text { to one another. }
\end{array}
\end{aligned}
$$

Translation by R. Fitzpatrick

Are all triangles isosceles?

Let M be the midpoint of $A B$.
Let P be the intersection point of the perpendicular to $A B$ through M and the angle bisector at C .

Let U be the perpendicular to AC through P.

Let V be the perpendicular to BC through P.

Claim: The following pairs triangles are congruent:
AMP and BMP
PCV and PCU
APU and APV

Are all triangles isosceles?

Let M be the midpoint of $A B$.
Let P be the intersection point of the perpendicular to $A B$ through M and the angle bisector at C.

Let U be the perpendicular to AC through P.
Let V be the perpendicular to BC through P.

Claim: The following pairs triangles are congruent:

- AMP and BMP (By SAS)
- PCV and PCU (By SAS)
- APU and APV (By ASA)

Let M be the midpoint of $A B$.
Let P be the intersection point of the perpendicular to $A B$ through M and the angle bisector at C .

Let U be the perpendicular to AC through P.

Let V be the perpendicular to BC through P.

Claim: The following pairs triangles are congruent:

- AMP and BMP

PCV and PCU

- APU and APV

Proof. The previous argument proceeded from an arbitrary vertex of the triangle, and so any pair of adjacent sides in the triangle are congruent. So all three are congruent, and therefore it is equilateral.

Review of last week

- Euclid ~300 BCE - Alexandria
- Euclid's Elements
- product of many years of work of many mathematicians.
- strong impact, still relevant on the math we study here and now.

Tuesday March 19

- Annotated bibliography: https://
www.math.stonybrook.edu/~moira/courses/ mat336-sp2024/bib.html
Review of last week

Describe the most important aspects of Euclid's Elements.

Euclid's Elements

- A book about geometry written around 300 BCE, which played (and still does) a fundamental role in the development of mathematical thought.
- Organized into mathematical statements or theorems called propositions.
- Propositions are arranged in a logical progression, where each step is justified by earlier results and axioms.

Describe the most important aspects of Euclid's Elements

Euclid's elements

Definitions

Common notions
Postulates
(self evident truths)
Propositions Constructions

Today's math

Undefined terms
 Definitions
 Axioms
 (assumptions wisely chosen)

Propositions
Constructions

In logical progression: Proposition N is proved using some of the following: postulates, common motions, definitions, and Proposition 1, 2,... Proposition N-1

First part of the proof: describe the construction.
(1) Let $A B$ be the given line
(2) Draw a circle, center A, distance $A B$. [Post. 3]
(3) Draw a circle, center B, distance $A B$. [Post. 3]
(9) Let C be a point where the circles intersect.
(5) Draw straight lines $A C$ and $B C$.
 [Post. 1]
$A B C$ is the required triangle.

What, if anything you deduce from this?

Proposition 1 of Euclid's Elements

Proposition 1: (in modern language) Given a line segment, it is possible to construct an equilateral triangle using the line segment as one of its sides.

Book VII. Some Definitions

1. A unit is (that) according to which each existing (thing) is said (to be) one.
2. A number is a multitude composed of units.
3. A number is a part of a number, the less of the greater, when it measures the greater;
4. A prime number is that which is measured by a unit alone.
5. Numbers relatively prime are those which are measured by a unit alone as a common measure.
6. A composite number is that which is measured by some number.

Proposition IX. 20 in Euclid's Elements states:

The (set of all) prime numbers is more numerous than any assigned multitude of prime numbers.

Express Proposition IX. 20 in contemporary language

Euclid's Elements

Proposition IX.20: Prime numbers are more than any assigned multitude of prime numbers.
(Modern) Proof: Assume that p_{1}, p_{2}, and p_{3} are prime.

Suppose that the primes A, B, C are 2, 3, and 5. Let N be as above and let G be the largest prime that divides N . What is

Euclid's Elements G?

Proposition IX.20: Prime numbers are more than any assigned multitude of prime numbers.

- Let A, B, and C be the assigned prime numbers.
- I say that there are more prime numbers than A, B, and C.
Take the least number $D E$ measured by A, B, and C. Add the unit $D F$ to $D E$.
- Then $E F$ is either prime or not.
- Let it, first of all, be prime. Thus, the (set of) prime numbers A, B, C, EF, (which is) more numerous than A, B, C, has been found.
- And so let EF not be prime.
- Thus, it is measured by some prime number [Prop. VII.31]. Let it be measured by the prime (number) G.
- I say that G is not the same as any of A, B, C. For if possible, let it be (the same).
- And A, B, C (all) measure DE.
- Thus, G will also measure DE.
- And it also measures EF.
- (So) G will also measure the remainder, unit DF (despite) being a number [Prop. 7.28]. The very thing (is) absurd. Thus, G is not the same as one of A, B, C.
- And it was assumed (to be) prime. Thus, the (set of) prime numbers A, B, C, G, (which is) more of) prime numbers $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{G}$, (which is) more
numerous than the assigned multitude (of prime numerous than the assigned multitude (of prime
numbers), A, B, C, has been found. (Which is) the very thing it was required to show.

This proposition is not used in the rest of the Elements.

Consider the primes $A=7, B=11$ and $C=13$. Let E =A.B.C+1 and let G be the smallest prime that divides E. What is G ?

P1	P2	P3	P1.P2.P3+1	FACTORS	FACTORS	FACTORS	FACTORS	FACTORS
2	3	5	31	31				
3	5	7	106	2	53			
5	7	11	386	2	193			
7	11	13	1002	2	3	167		
11	13	17	2432	2	19			
13	17	19	4200	2	3	5	7	
17	19	23	7430	2	5	743		
19	23	29	12674	2	6337			
23	29	31	20678	2	7	211		
29	31	37	33264	2	3	7	11	
31	37	41	47028	2	3	3919		
37	41	43	65232	2	3	151		
41	43	47	82862	2	13	3187		
43	47	53	107114	2	7	1093		
47	53	59	146970	2	3	5	23	71
53	59	61	190748	2	43	1109		

Euclid's five postulates

1.A straight line segment can be drawn joining
any two points.
2. Any straight line segment can be extended
indefinitely in a straight line.
3. Given any straight lines segment, a circle
can be drawn having the segment as radius
and one endpoint as center.
4. All right angles are congruent.
5.If two lines are drawn which intersect a third
in such a way that the sum of the inner
angles on one side is less than two right
angles, then the two lines intersect each
other on that side if extended far enough.

What is the statement of the Pythagorean Theorem?

Proof of
Pythagorean Theorem

What is the statement of the Pythagorean Theorem?

In right-angled triangles the square on the side opposite the right angle equals the sum of the squares on the sides containing the right angle.

Where does the first axiomatic proof of the Pythagorean Theorem we know of appear?
(1) Babylonian clay tablets
(5) Plato's writings
(2) Egyptian papyrus
(6) Euclid's Elements
(3) Indian sutras
(7) The Nine Chapters of the Mathematical book, dating back to around 200 BC)
(4) Pythagoras writings
(8) None of the above.

Describe the the proof of the Pythagorean theorem we just discussed.

The structure of the proportions in Euclid's Elements leading to

The proposition in Euclid's Elements Book I, arranged in logical progression

Proposition 47

What is the ratio of the areas of the triangle ABC and the rectangle EFBA? Does this relation change if you drag point C along the green line? Why or why not?

One Step in the Proof of Pythagoras' Theorem

1. Geogebra (QR Code)

2. Slido Describe the pattern you observed in the Geogebra app we just worked on, in such a way that somebody who has not seen the figure can understand what you are saying. For instance, you can start by "Consider a right triangle $A B C$. Suppose that BAC is the right angle...

Exploration of Euclid's proof of the Pythagorean Theorem
https://www.geogebra.org/m/hgrzqsv6

1. Geogebra (QR Code) https://www.geogebra.org/m/hgrzqsv6
2. Slido Describe the pattern you observed in the Geogebra app we just worked on, in such a way that somebody who has not seen the figure can understand what you are saying. For instance, you can start by "Consider a right triangle $A B C$. Suppose that $B A C$ is the right angle..

Exploration of Euclid's proof
 of the Pythagorean Theorem

Lect 1

entering the code at www.geogebra.org/classroom

Proposition 46:

To describe a square on a given

 straight line.Similar to construction of equilateral triangle.

Proposition 47

Proposition 47

In the fame manner it may be fhown

Byrne's Euclid

Proposition 47

Again, becaufe \ldots \|.

Byrne's Euclid

Proposition 47

Again, becaufe \ldots II

In the fame manner it may be fhown

$$
\begin{aligned}
& \text { that } \\
& \text { hence }
\end{aligned}
$$

Q.E.D.

Byrne's Euclid

Proposition 47

In the fame manner it may be fhown

Q.E.D.

Byrne's Euclid

The illustrations come from the site
https://www.cut-the-knot.org/pythagoras/
where you can find 122 proofs of the Pythagorean theorem.
Euclid's proof is axiomatic.

Proposition 47

If some of the propositions in Euclid's Elements are added as axioms then...

1. A contradiction can be deduced from the new (larger) set of axioms.
2. All the propositions in Euclid's Elements can be proven with the new (larger) the set of axioms
3. Some, but not all of the propositions proven in Euclid's Elements can be proven with the new (larger) set of axioms

Euclid's Elements. Select one true statement.

A. All the logical consequences of the postulates and common notions in Euclid's Elements are stated and proven in the Elements. Hence, no new propositions were proven after Euclid.
B. All the logical consequences of the postulates and common notions in Euclid's Elements were either proven in the Elements or before the fifteenth century. Since the fifteenth century, no new proportions were proved.
C. There are logical consequences of the postulates and common notions in Euclid's Elements which not have been proven.
D. All the above statements are false.

Euler Characteristic (Polyhedral Formula) In a
polyhedron, the following equation holds: $\mathrm{V}-\mathrm{E}+\mathrm{F}=2$, where V is the number of vertices, E is the number of edges and F is the number of faces. Descartes (~ 1600); Euler (~ 1700)

Choose a polyhedron and compute the number of vertices, edges and faces. Check that the Euler characteristic is two.

Morley's trisector theorem, 1899
https://ggbm.at/FRZ9Nfec

Summary

[^0]: Common notion 1.
 Things which equal the same thing also equal one another.
 Common notion 2.
 If equals are added to equals, then the wholes are equal.

 Common notion 3.
 If equals are subtracted from equals, then the remainders are equal.

 Common notion 4.
 Things which coincide with one another equal one another.
 Common notion 5. The whole is greater than the part.

