Presentations

Incas

About the Chasquis (or Chaskis)

- A chasqui was a messenger of the Inca empire.
- The chakis carried quipus, oral information and small packets.
- Chaskis were short-distance relay runners. Young men, especially those with superior running skills, were chosen for this job.
- Since the Incas had no written language, messages were memorized and repeated to the next runner during the relay.
- Runners traveled up to 10 to 15 kilometers (6 to 9 miles) until they reached a a small house where another chaski was waiting to run the next segment of the relay.

About the Chasquis (or Chaskis)

A chasqui was a messenger of the Inca empire.

These 'chasques' were employed in this kingdom. They were the sons of curacas [local chiefs] who were loyal. Each runner had a white feather sunshade on his head which he wore so that the next chasque would see him at a distance. The chasque also carried a trumpet called 'putoto' [shell] so that the next runner would be ready. The arms they carried were the 'champi' [a star-headed club] and a 'uaraca' [sling].

These chasques were paid by the Inca, and they got their food from his storehouses. Each 'churo chasque' [chasqui carrying a shell] was stationed at intervals of one-half league [2.5 kilometres (1.6 mi)] so he could run the distance quickly. They say that they could bring a snail alive from the New Kingdom of Granada [northern part of south America] to the Inca in Cuzco.
—Felipe Guaman Poma de Ayala, 1615

Incas used a positional number system and record their numbers in chords like the one on the photo. What do you think is the number represented in the drawing on the left?

Quipu
By Pis. 124 - Own work, CC BY-SA 4.0, httosillcommons.wikimedia. orgmwindex.php?

Threads That Speak: How The Inca Used Strings to Communicate | National Geographic https://youtu.be/AmPyz1kCbOw

Quechua was the main language of the Inca Empire. Quipu (or khipu) is the Quechuan word for "knot".

A quipu is a collection of colored knotted cords, in which the colors, the placement of the cords, the knots on the individual cords, the placement of the knots, and the spaces between the knots all contribute to the meaning of the recorded data
Every quipu has a main cord, thicker than the others, to which are attached other cords, called pendant cords, to which may be attached further cords, called subsidiary cords. Sometimes there is a top cord, a cord placed near the center of several pendant cords and tied so that when the quipu lies flat it falls in a direction opposite the pendant cords. Data is recorded on the cords (other than the main cord) by a system of knots. The knots are clustered together in groups separated by spaces and represent numbers using a base-10 place value system with the highest value place closest to the main cord.

More about incas and quipus

The largest number so far discovered on a quipu is 97,357.

 hitpsillcommens. wikimedia.

The ordinary judges gave a monthly account of the sentences they imposed to their superiors, and they in turn reported to their immediate superiors, and so on finally to the Inca or those of his Supreme Council. The method of making these reports was by means of knots, made of various colours, where knots of such and such colours denote that such and such crimes had been punished. Smaller threads attached to thicker cords were of different colours to signify the precise nature of the punishment that had been inflicted.

Inca Garcilaso de la Vega ~ 1600

yupana and is resumed to be the countity
board o t the p pasas.

The Incas also had an excellent knowledge of arithmetic, and the way they counted was quite remarkable. Throughout the Empire, all levies and taxes, both exemptions and claims, were recorded by means of knots made in colored cords. They could add, subtract, and multiply with these knots, and in order to determine what was owed to each village, made their allotments on the basis of little pebbles and grains of corn, in such a way that there could be no mistakes in their calculations. Special bookkeepers were appointed for each section, whether it had to do with war or peace, such as taking a census of the vassals, or of levies, herds, laws, and ceremonies, and they were able to give an accounting at any moment, their collections of cords and knots being as clear and exact for them as any books. The head accountants, who were in charge of several things at a time, worked with these same means, quite as easily as the others.

> Search for images on Google related to "Maya culture" or "Maya script." Based on those images, what conclusions can you draw about the Maya civilization?

Introduction and Mayan script

> mathematics?

Ancient Maya 101 | National Geographic https://youtu.be/Q6eBJjdca14

The Mayas

- had a written language, which help us learn about their mathematics.
- records were preserved in bark paper or carved in stone.
- priestly class who studied mathematics and astronomy.
- Remarkable development between 250 to 900 of our era.

Mayan writing carved on stone

Mayan page in tree bark
Mayan page in tree bark
From "Cracking the Mayan code"
httos://www.pobs.org/woght/novalmayacoode/

Breaking the Maya Code \#2: The Maya Script https://youtu.be/1t5FALvtMQg

que antes de sitice, y en esto wo merran ame iosend enco
 agna prigla bac bó tieve $a \cdot h$.ante dessico ponen ellos al
 Co escrimen a partes, etac Co mia yotmerma eflis) jurezay. no putiers apmi mitratura dello sino por dar mentace entera de lat osas deista genite. Mamkat quiere férivno imiers ellor Co esoriven a pacter desta mavera.

 I Y tiene otias amiadudas de la mestion paid otios cosas \hat{q} las be monester 'y yp nio viam para nado dertor sus caizateries espernalmente la gente moca of an apzendido los neor
 To de Landaís interpretation

Number system

Mayan Calendars

Breaking the Maya Code \#3: The Maya Books

https://youtu.be/GgCf3Q7qooQ
What type of Mayan hieroglyphs were deciphered first?

The ancient Maya civilization had two (or three, depending of how we count) calendars

Round calendar, composed of

- Tzolkin or sacred calendar
- Haab or farmer's calendar

Long count calendar (for very long periods of time)

Mayan Calendars

https://maya.nmai.si.edu/calendar/maya-calendar-converter

Please describe the Mayan calendars discussed in this clip. Additionally, if possible, identify any mathematical structure to which the Mayan calendar system is connected.

Breaking the Maya Code \#4: The Maya Calendar https://youtu.be/qhWItvjk9Yg Breaking the Maya Code by Night Fire films (extract) https://vimeo.com/ondemand/115559/223534703

Part 2 of
Breaking the Maya Code \#4: The Maya Calendar https://youtu.be/qhWItvjk9Yg What do the large numbers found in the Dresden Codex represent? Could you explain the concept of the Long Count in the Mayan calendar system?

Based on astronomical observations, the Maya developed an elaborate system of calendars.

- Round calendar
- Tzolkin calendar
- Haab calendar
- Long count

Mayan Calendars

https://maya.nmai.si.edu/calendar/ maya-calendar-converter

Round calendar (Composed of the union of Haab and Tzolkin)

Mayan number system

Write down 365 in the Mayan number system. (numbers are written vertically, lower units at the bottom)

Base 20

Modified base 20

\square
$\times 20^{5}$
$\times 20^{4}$
$\times 20^{3}$
$\times 20 \times 18$
$\times 20^{1}$
$\times 20^{\circ}$

$\begin{array}{lllll}10 & 11 & 12 & 13 & 14 \\ & 10 & \bullet \bullet & 00 & 0\end{array}$工 $\begin{array}{lllll}15 & 16 & 17 & 18 & 19\end{array}$

Haab Calendar

Used by farmers

18 "months" plus five unlucky days
Each "month" lasted 20 days and was name after a god.

This calendar works similarly to ours: First date is 0 Pop, followed by 1 Pop, 2 Pop ... 19 Pop, 1 Wo and so on. (Pop and Wo are months)

Educated guess: How many days are there on the Haab or farmer's calendar ? Hint: Use common sense, what does a farmer need to know?

The unlucky month was named Uayeb (which translates to "That which has no name".)

Translate the Mayan number below to Hindu-Arabic numerals in two ways:

1. Assuming the Mayan number system was an "honest" base 20.
2. Assuming the "calendar way", that is, the third play unit instead of begin 20×20 is 20×18.

Haab Calendar

Translate a Mayan number on to Hindu-Arabic in two ways (units at the bottom):

1. Assuming Mayan number system was "honest" base 20
2. Assuming the "calendar way" (that is days were counted, the third-place unit, instead of being 20×20 was 20×18).
When days were counted, the thirdplace unit, instead of being 20.20 was 20.18.

This was probably because there are 360 days in the "regular" part of the 365 days calendar know as the Haab and the other 5 days were considered "unlucky" (and so best not included in the count)

A Maya representation of the Tzolk'in from the Madrid Codex. Time is represented by 260 dots marking a path or a journey of twenty days and thirteen numbers.

Tzolkin or Sacred Calendar

- 20 names of gods: Imix, Ik, Akbal, Kan, Chicchan, Cimi, Manik, Lamat, Muluc, Oc, Chuen, Eb, Ben, Ix, Men, Cib, Caban, Etznab, Cauac, and Ahau. 13 days.

Each day is specified by a pair $\left(a, D_{b}\right)$, where

- $1 \leq a \leq 13$

- $1 \leq \mathrm{D}_{\mathrm{b}} \leq 20$ (we will use numbers instead of gods names. Imix $=1, \mathrm{Ik}=2$, etc)
The Tzolkin year begins with (1,1), continues with $(2,2),(3,3)$ and so on. (That is 1 Imix, $2 \mathrm{Ik}, 3$ Akbal, ...)

How many different dates (that is, pairs

 ($\mathrm{a}, \mathrm{D}_{\mathrm{b}}$)) can be formed in this calendar?
Suppose the Haab and Tzolkin calendar start at a given date (say, 0 Pop, 1 Imix). How many days would it take to go back to that date?

A Haab year contains 365 days. A Tzolkin year contains 260 days.

Acontemporary representation of the Calendar Round, interlocking the
Tzolkin (left with the Haab (right).

The Haab and Tzolkin together form the round calendar

Merging the Tzolkin and the Haab calendars Mayans obtained a cycle of 18,980 days.
A Calendar Round date, with both Tzolk'in and Haab components, can uniquely mark an event within a 52 year period.
Any event spanning more than 52 years required an additional calendar, the Long Count calendar.

Round calendar

Image from Breaking the Maya Code
The Maya believe that when a person reaches 52 years of age, they attain the special wisdom of an elder.

Long count calendar

> What are the numbers on the top of the glyphs a, b, c and d ?

Images from the documentary

Breaking the Mayan Code https://nightfirefilms.org/breaking-the-maya-code/

Images from the documentary Breaking the Mayan Code https://nightfirefilms.org/breaking-the-maya-code/

The long count calendar counts how much time elapsed since a fixed event, the creation date.

Long count calendar

1. Initial Series Introductory Glyph: This symbol identifies this date as belonging to the Long Count system
2.Baktun: A number and the symbol of "baktun"
2. Katun: A number and the symbol for "katun"
4.Tun: A number and the symbol for "tun"
5.Uinal: A number and the symbol for "uinal"
3. K'in: A number and the symbol for " k ' in "

Long count calendar

Long Count calendar is a system that counts 5 cycles of time (kins, uinals, tuns, katuns, baktuns). The shortest period was the kin (day).

1 uinal $=20$ kins
1 tun = 18 uinals
1 katun $=20$ tuns
1 baktun = 20 katuns
A Long Count date and a Calendar Round date were used by the to place mythical and historical events in chronological order.
An era, or a full cycle, is comprised of 13 baktun cycles.
Note that this is similar to the Gregorian calendar system that counts days, months years, centuries and millennia.

How many years are there in a batkun? To facilitate computations, you can assume that all years are 365 days long. You can use calculators.

What is the day after the date below in the Long Count calendar? Write it as baktun.katun.tun.uinal.kin

Teams of 3

- 1 kin is one day.
- 1 uinal (month) $=20$ kins
- 1 tun (year) = 18 uinals
- 1 katun = 20 tuns
- 1 baktun = 20 katuns

All calendars again

Long count calendar: 13.0.0.0.0

 language of the Mayans, side-by-sidie with a Spanish
translation.
"Some scholars describe this as a moment of creation. When a similar cycle comes to an end, as indeed happened on 24 December AD 2012, it was thought to anticipate another cycle of destruction and creation." Michael D. Coe. "The Maya."

All calendars

```
- Haab 365 days
- Tzolkin 260 (= 13 x 20) days
```

Round calendar

- Long count:
- Counts days since a certain date.
- Expressed as
a.b.c.d.e $=144,000 a+7200 b+360 c+20 d+e$
- Some scholars believe it is cyclic, and goes back to zero after 13.0.0.0.0=1,872,000 days (roughly 5,125 years). Or maybe after 20.0.0.0.0 days....

Mayan Calendar

- Two problems
- Given a date (as a triple) and a number of days later, determine the new date.
- Given two dates determine the least number days between them

Mayan Calendar Converter

https://maya.nmai.si.edu/calendar/maya-calendar-converter

Mathematics of the Yoruba people

Yoruba number system

- The Yoruba were the dominant cultural force some regions of Africa during the 11 century and possibly before.
- Count using cowries shells may explain their remarkable number system.

Yoruba number system

- Complex
- Base 20
- Strong reliance of subtraction
- Numbers between 200 and 2000 (except 400) are treated as multiples of 200 .
- Terms for
- 1 to 20
- 20,30,

Numerals	
1	10
2	20
3	30
4	200
5	400
6	
7	
8	
9	
10	

- 200, 400.

11	$10+1$
12	$10+2$
13	$10+3$
14	$10+4$
15	$20-5$
16	$20-4$
17	$20-3$
18	$20-2$
19	$20-1$
30	30
40	20×2
45	$(20 \times 3)-10-5$
50	$20 \times 3-10$
54	$20 \times 3-10+4$
60	20×3
106	$(20 \times 6)-10-4$
108	$(20 \times 6)-10-2$
300	$20 \times(20-5)$
318	$400-(20 \times 4)-2$
525	$(200 \times 3)-(20 \times 4)+5$

Yoruba number system

Example: Compute 19×17

- Start with 20 piles of 20 shells each.
- Remove one shell from each pile (-20)
- Remove three of the piles (with 19 shells each)
- Take two shells from one of the removed piles, add one to each of the other two removed piles. (Get one pile with 17 shells and two with 20 shells each)
- 400-20-(20x2)-(20-3)=323

11	$10+1$
12	$10+2$
13	$10+3$
14	$10+4$
15	$20-5$
16	$20-4$
17	$20-3$
18	$20-2$
19	$20-1$
30	30
40	20×2
45	$(20 \times 3)-10-5$
50	$20 \times 3-10$
54	$20 \times 3-10+4$
60	20×3
106	$(20 \times 6)-10-4$
108	$(20 \times 6)-10-2$
300	$20 \times(20-5)$
318	$400-(20 \times 4)-2$
525	$(200 \times 3)-(20 \times 4)+5$

