Mathematics in Mesopotamia

ऀ॑॑ऀॾॾॾॾॾॾॾॾॾ ॾॖॾॖॾॖॾॾॾॾॾॾॾॾॾ

द हरहा हरहा हरहा हर

< ≺∏ ∢∏

- · Overview Mesopotamia.
- Cuneiform and the beginning of writing
- Review of numbers
- Areas
- Plimpton 322
- Number systems
- Square roots: algorithm and computations
- The "canonical" triangle.
- Calculation of areas
- Solutions of Equations
- Reciprocals
- Multiplication tables

Write down a brief summary of your topic, and the date you are presenting.

Overview

Describe one or more mathematical developments of the Mesopotamian culture mentioned in this clip.

Ancient Mesopotamia 101- National Geographic https://youtu.be/xVf5kZA0HtQ

A praise poem of Šulgi

I am a king, offspring begotten by a king and borne by a queen.
I, Šulgi the noble, have been blessed with a favourable destiny right from the womb.
When I was small, I was at the academy, where I learned the scribal art from the tablets of Sumer and Akkad.
None of the nobles could write on clay as I could.
There where people regularly went for tutelage in the scribal art, I qualified fully in subtraction, addition, reckoning and accounting.
The fair Nanibgal, Nisaba, provided me amply with knowledge and comprehension.
I am an experienced scribe who does not neglect a thing.

Nanibgal, Nisaba, The patron goddess of the scribal art.

1	Mesopotamian history	Mesopotamian mathematics	The rest of the world	
1000 AD	-	Al-Khwarizmi's Algebra	Development of algebra in India	
	Foundation of Islam		Mayan astronomy in Central America Development of Indian-Arabic decimal place-value system	
PON AGE	Traditional Mesopotamian culture dying under the influence of foreign rulers Cotton Coinage Brass	Latest known cuneiform tablets are astronomical records Matha and astronomy maintained and developed by temple personnel Mathematical tradition	Ptolemy's Almagest Invention of paper, in China Great Wall of China, 214 The Elements of Euclid, c. 300 Birth of Buddha, c. 570	Words:
LATE LATE NONZE 000 AGE 000	Curreiform Akkadian being = replaced by siphabetic Aramaic Smelted iron, Camela Glazed pottery, Glass	apparently commuse, although the evidence is currently very slight A few mathematical tables known, from altes on the periphery of Mesopotamia	Foundation of Rome, c. 750 Earliest known Indian maths Tutankhamen	Mesopotamia vs Babylonia
AGE BRONZE B	First large empires Ziqurats Horses Addadan written in cuneiform characters	Best-documented period of maths in scribal schools Development of the sexag- esimal place value system	Stonehenge completed Rhind mathematical papyrus Earliest recorded eclipse: China, 1876 Indus Valley civilisation	
EARLY BRONZE	City states Palaces Development of writing into cunetorm (Sumerian) High Sumerian culture	Earliest known mathematical tables	Collapse of the Egyptian Old Kingdom Great Pynamid Upper and Lower Egypt united	
	URBANISATION Beginnings of writing and bureaucracy Cylinder seals Monumental architecture Potter's wheel Bronze, gold and silver work	Development of pre-literate accounting system, with sealed clay envelopes and 'tokens'	Stonehenge begun Megalithic cultures of western Europe First temple towers in South America	Counting in Cuneiform Authorish Essanor Rohon Source: Mathematics in School, Sep., 1998, Vol. 27, No. 4, History o 1998, pp. 2–9 Published by: The Mathematical Association

Mathematics (Sen

Cuneiform writing: origins, decipherment and texts.

Mesopotamian Accounting Tokens

- Each counter shape represented a specific quantity of a specific commodity.
- Each category of items was counted with special numerations or number words specified with special

The Mesopotamian accounting tokens were found in present Iraq, and date from about 4000 BCE. The **cone**, **spheres**, and flat disc were measures of cereals: smallest, larger, and largest. The **tetrahedron** designated a unit of work, perhaps one man-day, or the amount of work performed by one man in one day. (Image by Denise Schmandt-Besserat and the University of Pennsylvania Museum of Archaeology and Anthropology. University of Pennsylvania, Philadelphia.)

counting-tokens

Envelope and contents from Susa, Iran, circa 3300 BCE. For instance, the large cone represented a very large measure of grain; the small **cones** designated small measures of grain. (Image Denise Schmandt-Besserat and Musée du Louvre, Département des Antiquités Orientales, Paris.)

Mesopotamian Writing

- According to Schmandt-Besserat, the transformation of three-dimensional tokens to two-dimensional signs to communicate information was the beginning of writing in the Mesopotamia.
- Eventually, the tokens were replaced by signs made by their impressions onto solid balls of clay, or tablets
- The impressed signs evolved to become cuneiform writing.

Writing seems to have been invented independently by *at least* by four societies: Mesopotamia, Egypt, China, Mesoamerica.

Impressed tablets from, Iran, circa 3200 BCE. Each circular impression stood for one large measure of grain; each wedge or conical impression designated a smaller measure of grain.(Image by by Denise Schmandt-Besserat and Musée du Louvre, Département des Antiquités Orientales, Paris.))

https://www.bl.uk/history-of-writing/articles/where-did-writing-begin#

Behistun Inscription -the "cuneiform Rosetta stone-

Babylonian Rosetta

New Data Deciphered From the Monument of Darius the Great

On the face of precipitous Mount Behiatun in Tran is the 2500-year-old scuiptured monument of Darius the Great, which has been likened to the famous Rosetta Stone of Egypt because it provides the key to the languages spoken in ancient Babylonia and Elam. The same story is told in three languages. One of these is ancient Persian, which was known. Hence it was possible to decipher the others. The man who did the recent deciphering is Dr. George C. Cameron, who has been annual professor at the American School of Oriental Research at Baghada. To decipher the inscription he had to make photographs and plastic impressions while he was suspended by steel cables from a mountain point 194 feet above the mountain point aboviont. There were times when the work had to be done in bitter cold, while anovatorms raged.

Ehc New Hork Eimes Published: March 27, 1949 Copyright © The New York Times

pyright © The New York Times

See https://archive.org/details/sculpturesinscri00brituoft/page/n39/mode/2up for more information

Level of Darbin the Ground with the state dition to the corrignal relief and that it consisted of an inset piece of stone, anchored with iron pegs set in lead. How did the enormous inscription 27 test long by more than 20 feet high, reach its present site? Dr. Cameron found the remains of an ancient stairfound the remains of an ancient stairhad been chineled off the side of the mountain.

mountain. Darius wanted caravan voyagers to view the great work, but feared that the great work, but feared that fourty has known that is every shoring his deeds for posterity because a poiread my inscription says. "You who read my inscription says." For good Aburramada be thy friend, and thou big family." and thou shalt have a big family."

Behistun Inscription -the "cuneiform Rosetta stone-

written in three different cuneiform script languages: Old Persian, Elamite, and Babylonian (a variety of Akkadian).

Punishment of captured impostors and conspirators: Gaumäta lies under the boot of Darius the Great. Mount Behistun, Public domain, via Wikimedia Commons

By Unknown author - http://titus.fkidg1.uni-frankfurt.de/didact/idg/iran/apers/DB1_1-15.Gl Public Domain, https://commons.wikimedia.org/w/index.php?curid=124383

Code of Hammurabi about 1700 BC

"an eye for an eye, a tooth for a tooth" (lex talionis)

Epic of Gilgamesh

Neo-Assyrian clay tablet. Epic of Gilgamesh, Tablet 11: Story of the Flood. Known as the "Flood Tablet" From the Library of Ashurbanipal, 7th century BC. British Museum

Mesopotamian Mathematics in a slide-nutshell

Ancient Assyrian statue currently in the Louvre, possibly representing Gilgamesh

Example of uses of mathematics

- It was an important task for the rulers of Mesopotamia to dig canals and to maintain them, because canals were not only necessary for irrigation but also useful for the transport of goods and armies.
- The rulers or high government officials must have ordered Babylonian mathematicians to calculate the number of workers and days necessary for the building of a canal, and to calculate the total expenses of wages of the workers.
- There are several Old Babylonian mathematical texts in which various quantities concerning the digging of a canal are asked for.

https://mathshistory.st-andrews.ac.uk/HistTopics/Babylonian_mathematics/ K Muroi, Small canal problems of Babylonian mathematics, Historia Sci. (2) 1 (3) (1992), 173-180. Educated guess: Answer one of the following: what do you think it means that

- a. 7/8 is the coefficient for the height of an equilateral triangle?
- b. 1/3 was the coefficient for the diameter of a circle?
- c. 1/12 was the coefficient for the area of a circle?

Procedures to determine lengths, areas and volumes of many kinds of figures. The defining component of an equilateral triangle was a side and 7/8 was the coefficient for the height) The defining component of the circle was the

circumference. The coefficients for

the diameter was 1/3=(0;20)₆₀

the area 1/12= (0;5)60

Tables in Tablets

- One of the most amazing aspect of the Babylonian's calculating skills was their construction of tables to aid calculation. Two tablets which date from 2000 BC. give squares of the numbers up to 59 and cubes of the numbers up to 32.
- Babylonians used the formula

$a.b = (1/2)((a+b)^2 - a^2 - b^2)$

to make multiplication easier.

 The Babylonians did not have an algorithm for long division. Instead they based their method on the fact that

A % B = A x (1/B)

and used tables of reciprocals.

Numbers in Cuneiform

ł	10	60	600	3 600	36 000
Ø	٥	Ö	0	Ø	۲
small reed "Oblique	small reed 'perpondiculor"	largereed "Oblique"	l argenced Small reed perpendikular ¹	largeneed "perpendicular"	largeteed 'perpendicular' smail teed 'perpendicular'

Later Sumerian Numerals

1	10	60	600	3 600	36 000
r	∢	r	∢	r	\prec
small stylus "vertical"	small stylus "oblique"	large stylus, "vertical"	large stylus, "oblique"	very large stylus, "verfical"	very large stylus, "oblique"

Base 60 was used in Mesopotamian mathematics because...

The approximate duration of the year is 60²
 60 has many divisors (for instance, 2,3,4,5 and 6)
 Of advantages for writing and calculating fractions

7 1	{7 11	∜7 21	***7 31	47 41	1 51
77 2	12	₹{?? 22	*** 177 32	42 PT 42	10 PT 52
₩ з	(1 3	₩₩ 23	***??? 33	42 111 43	*** 117 53
(27 4	14	₩\$\$7 24	****\$7 34	44	*** 54
¥ 5	∜ ∰ 15	₩\$\$\$ 25	₩₩ 35	45 🙀 45	*** 55
FFF 6	∜₩ 16	₩₩ 26	₩₩ 36	* 🛠 🐺 46	**** 56
87 7	17	₩₩ 27	₩₩ 37	47	*** 57
₩ 8	18	₩₩ 28	₩₩ 38	₩₩ 48	* * # 5 8
# 9	∢∰ 19	₩₩ 29	**# 39	₩# 49	** 5 9
∢ 10	{{ 20	*** 30	4 0	50	

Early Sumerian Numerals

There are many theories trying to explain base 60

• Theon of Alexandria (~300CE): 60 is, among all the numbers the most convenient, because, being the smallest among all those which have the most divisors, it is the easiest to handle.

Can you imagine the Sumerians creating a committee to decide on their number base?

- Neugebauer (~1950CE): a decimal counting system was modified to base 60 to allow for dividing weights and measures into thirds.
- Several theories have been based on astronomical events.
 - 60 is the product of the number of months (moons) in the year with the number of planets (Mercury, Venus, Mars, Jupiter, Saturn)
 - The year was thought to have 360 days was suggested as a reason for the number base of 60. (However the Sumerians certainly knew that the year was longer than 360 days.)
 - The sun moves through its diameter 720 times during a day and, with 12 Sumerian hours in a day. In that way, one can come up with 60.
- Some theories are based on geometry.
 - an equilateral triangle was considered the fundamental geometrical building block by the Sumerians. Now an angle of an equilateral triangle is 60° so if this were divided into 10, an angle of 6° would become the basic angular unit. Now there are sixty of these basic units in a circle so again we have the proposed reason for choosing 60 as a base. (*it* assumes 10 as the basic unit for division)

There are many theories trying to explain base 60

- Sumerian civilization must have come about through the joining of two peoples, one of whom had base 12 for their counting and the other having base 5. (5 was used as a number base among a few ancient civilizations). As the two peoples mixed and the two systems of counting were used by different members of the society trading with each other then base 60 would arise naturally as the system everyone understood.
- One of the nicest things about these theories is that it may be possible to find written evidence of the two mixing systems and thereby give what would essentially amount to a proof of the conjecture.

There are many theories trying to explain base 60

Sumerian civilization must have come about through the joining of two peoples, one of whom had base 12 for their counting and the other having base 5. (5 was used as a number base among a few ancient civilizations). As the two peoples mixed and the two systems of counting were used by different members of the society trading with each other then base 60 would arise naturally as the system everyone understood.

Two peoples who mixed to produce the Sumerians having 10 and 6 as their number bases. This version has the advantage that there is a natural unit for 10 in the Babylonian system which one could argue was a remnant of the earlier decimal system.

E. F. Robertson Suggested: **The reason has to involve the way that counting arose in the Sumerian civilization** (just as 10 became a base in other civilizations who began counting on their fingers, and twenty became a base for those who counted on both their fingers and toes.)

There are many theories trying to explain base 60

One can count up to 60 using your two hands. On your left hand there are three parts on each of four fingers (excluding the thumb). The parts are divided from each other by the joints in the fingers. Now one can count up to 60 by pointing at one of the twelve parts of the fingers of the left hand with one of the five fingers of the right hand. This gives a way of finger counting up to 60 rather than to 10.

E. F. Robertson Suggested: **The reason has to involve the way that counting arose in the Sumerian civilization** (just as 10 became a base in other civilizations who began counting on their fingers, and twenty became a base for those who counted on both their fingers and toes.)

Writing cuneiform

http://writingcuneiform.blogspot.com/ 2012/10/5-making-basic-wedges.html

Cuneiform writing

Clips from https://cuneiform.neocities.org/CWT/Figures/2_keilschrift_hwc.gif

Cuneiform writing: How it was done https://cuneiform.neocities.org/CWT/Figures/2_keilschrift_hwc.gif

- Annotated bibliography due on 2/27.
 <u>https://www.math.stonybrook.edu/~moira/courses/</u> mat336-sp2024/bib.html
- Abstract and outline of the paper. Advise: write an outline for your presentation.

Fractions in base 60 -Review

Express 1/20, 21/80 or 1/7 in cuneiform (answer in Wooclap in base 60)

A school exercise, most likely.

1.What are the values of a, b and c?2.What is do you think the purpose of this tablet?

- YBC 7289 is an Old Babylonian clay tablet (circa 1800–1600 BCE) from the Yale Babylonian Collection.
- Appears to be a **practice school exercise** undertaken by a novice scribe.
- Contains not only a constructed illustration of a geometric square with intersecting diagonals, but also, in its text, a numerical estimate of √2 correct to three sexagesimal or six decimal places.
- The value demonstrates one of the greatest known computational accuracy obtained anywhere in the ancient world.
- It is believed that the tablet's author copied some of the results from an existing table of values and did not compute them himself.

Picture from Yale Collection Drawing by Eleanor Robson

 $\sqrt{2}$ tablet

A digital replica to hold in your digital hands

Babylonian approximation of the square root of a number N, starting from a number a such that a^2 <N. One starts with a rectangle of area N, with a side of length a.

Babylonian approximation of the square root of a number N when a² <N

1. Find a such that a² is close

to N and a² < N

- $2.N=a^2 + (N a^2)=a^2 + B$ $3.N=a^2 + B$ is area of the
- "yellow"shape.
- 4. Since a² is close to N, the area of the yellow shape is close to the area of the orange square.
- 5. Hence, the square root of N is close to the square root of the area of the orange square.

7. The length of the side of the orange square is a+B/(2a). Thus, the a+B/(2a) is the new approximation to \sqrt{N} .

Babylonian approximation of the square root of a number N when a² > N

- 1. Find a such that a^2 is close to N and $a^2 > N$
- $2.N = a^2 (a^2 N) = a^2 B$
- 3.N= a² B is area of the "orange"shape.
- 4. The area of the orange shape is close to the area of the pink square (the difference is a square smaller than B)
- 5. Hence, the square root of N is close to the square root of the area of the orange square.

The new approximation is a' =a- $(a^2-N)/(2a)$ = a+ $(N-a^2)/(2a)$

- 6. The square root of the area of the pink square is equal to the length of its side, a'.
- 7. The length of the side of the orange square is a-B/(2a). Thus, the a-B/(2a) is the new approximation to \sqrt{N} .

Babylonian approximation of the square root of a number N

Given a guess a, one finds a new guess $a'=a + (N-a^2)/(2a)$. In both cases (whether we start with $a^2>N$ or $a^2<N$.

A number and its reciprocal differ in 7. What is the number?

A reciprocal exceeds its reciprocal by 7. What are the reciprocal and its reciprocal?

- 1.You: break in half the 7 by which the reciprocal exceeds its reciprocal, and 3;30 (will come up).
- 2.Multiply 3;30 by 3;30 and 12;15 (will come up).
- 3.Append [1 00, the area,] to the 12;15 which came up for you and 1 12;15 (will come up).
- 4. What is [the square-side of 1] 12;15? 8;30.
- 5.Put down [t8;30 and] 8;30, its equivalent, and subtract 3;30, the takiltum-square, from one (of them); append (3;30) to one (of them).
- 6.One is 12, the other is 5.
- 7. The reciprocal is 12, its reciprocal 5.

A reciprocal exceeds its reciprocal by 7. What are the reciprocal and its reciprocal?

Note: Suppose x and y are reciprocal pairs (that is, x.y=1) and set a=1 $b=1+((x-y)/2)^2$ $c=1+((x+y)/2)^2$ Then a, b and c are a Pythagorean triple, that is $a^2+b^2=c^2$.

Draw a triangle

•Draw a triangle and your first name, and take a photo.

•Drag the photo to <u>https://www.yogile.com/</u> <u>mat336/upload</u> (the QR code is for that website) or <u>mat336@yogile.com</u>

•Note: You do not need to sign in to Yogile.

List features common to most drawings (besides the obvious fact that they are triangles)

List features common to most drawings (besides the obvious fact that they are triangles)

A Babylonian typical triangle

M 29-15-709 (obverse). Drawing by the Eleanor Robson - Words and Pictures: New Light on Plimpton 322 - The American Mathematical Monthly , Feb., 2002, Vol. 109, No. 2 (Feb., 2002), pp. 105-120

Plimpton 322

https://www.nytimes.com/2010/11/23/ science/23babylon.html?smid=url-share

Plimpton 322

An Exhibition That Gets to the (Square) Root of Sumerian Math - NYTimes - Nov 22, 2010

- First Western owner, George A. Plimpton bequeathed to Columbia • University in the mid-1930s.
- Surviving correspondence shows that he bought the tablet for \$10 from a • dealer called Edgar J. Banks.
- Banks told him it came from an archaeological site called Senkereh in • southern Iraq, whose ancient name was Larsa
- Approximate date of the tablet: 1800 BCE.

š	ta-l a 1 i	k] <i>i</i> - n] -	il- ti na-a	i și s-sà-	- li - hu-ú	ip i-ma	- sag	tim i-il-lu-ú	íb-s	si ₈	sag	íb-si _s	și-l	i-ip-tim	mu-t	oi-im
1	59		15						1	59		2	49		ki	1
1	56	56	58	14	56	15			56	7		3	12	1	ki	2
1	55	7	41	15	33	45			1	16	41	1	50	49	ki	3
1	53	10	29	32	52	16			3	31	49	5	9	1	ki	4
1	48	54	1	40					1	5		1	37		ki	5
1	47	6	41	40					5	19		8	1		ki	6
1	43	11	56	28	26	40			38	11		59	1		ki	7
1	41	33	<u>59</u>	3	45				13	19		20	49		ki	8
1	38	33	36	36					9	1		12	49		ki	9
1	35	10	2	28	27	24	26	40	1	22	41	2	16	1	ki	10
1	33	45							45			1	15		ki	11
1	29	21	54	2	15				27	59		48	49		ki	12
1	27		3	45					<u>7</u>	12	1	4	49		ki	13
1	25	48	51	35	6	40			29	31		53	49		ki	14
1	23	13	46	40					56			53			ki	15

Plimpton 322: a review and a different perspective Author(s): John P. Britton, Christine Proust and Steve Shnider Source: Archive for History of Exact Sciences, September 2011, Vol. 65, No. 5 (September 2011), pp. 519-566

Errors are italicized and underlined In dark gray, unreadable numbers

Plimpton 322 in "our" number system

ide Diagonal s d	or (s/ Short side l)^2 s	nal Row d
119 169	8 119	169 1
367 4825	6 3367	325 2
6649	1 4601	549 3
709 18541	9 12709	541 4
65 97	7 65	97 5
319 481	9 319	1 81 6
291 3541	7 2291	541 7
799 1249	4 799	249 8
481 769	4 481	769 9
961 8161	6 4961	161 10
45 75	45	75 11
579 2929	8 1679	929 12
161 289	4 161	289 13
771 3229	8 1771	229 14
56 106	5 56	106 15

Plimpton	Plimpton 322 in "our" number system								
(d/l) ² or (s/l) ²	Short side s	Diagonal d	Row	d²-s²	(d ² -s ²) ^{1/2}				
(1).9834028	119	169	1	14400	120				
(1).9491586	3367	4825	2	11943936	3456				
(1).9188021	4601	6649	3	23040000	4800				
(1).8862479	12709	18541	4	182250000	13500				
(1).8150077	65	97	5	5184	72				
(1).7851929	319	481	6	129600	360				
(1).7199837	2291	3541	7	7290000	2700				
(1).6927094	799	1249	8	921600	960				
(1).6426694	481	769	9	360000	600				
(1).5861226	4961	8161	10	41990400	6480				
(1).5625	45	75	11	3600	60				
(1).4894168	1679	2929	12	5760000	2400				
(1).4500174	161	289	13	57600	240				
(1).4302388	1771	3229	14	7290000	2700				
(1).3871605	56	106	15	8100	90				

Plimpton 322 in "our" number system. Do you see pattern in the numbers of the last column?

(d/l) ² or (s/l) ²	Short side s	Diagonal d	Row	d ² -s ²
(1).9834028	119	169	1	14400
(1).9491586	3367	4825	2	11943936
(1).9188021	4601	6649	3	23040000
(1).8862479	12709	18541	4	182250000
(1).8150077	65	97	5	5184
(1).7851929	319	481	6	129600
(1).7199837	2291	3541	7	7290000
(1).6927094	799	1249	8	921600
(1).6426694	481	769	9	360000
(1).5861226	4961	8161	10	41990400
(1).5625	45	75	11	3600
(1).4894168	1679	2929	12	5760000
(1).4500174	161	289	13	57600
(1).4302388	1771	3229	14	7290000
(1).3871605	56	106	15	8100

Plimpton 322 in "our" number system

(d/l) ² or (s/l) ²	Short side	Diagonal	Row	d ² -s ²	(d ² -s ²) ^{1/2}
(1).9834028	119	169	1	14400	120
(1).9491586	3367	4825	2	11943936	3456
(1).9188021	4601	6649	3	23040000	4800
(1).8862479	12709	18541	4	182250000	13500
(1).8150077	65	C 97	5	5184	72
(1).7851929	319	183 1	Ś	129600	360
(1).7199837	2291	3541	7	7290000	2700
(1).6927094	799	1249	8	921600	960
(1).6426694	481	769	9	360000	600
(1).5861226	4961	19.9465	10	41990400	6480
(1).5625	45	75	nteget	3600	60
(1).4894168	V\$79	5° is 99	12	5760000	2400
(1).4500174	161	289	13	57600	240
(1).4302388	1771	3229	14	7290000	2700
(1).3871605	56	106	15	8100	90

What do you think Plimpton 322 is about and why?

isor, not hat

(using

Three interpretations by schol	ars. Pythagorean triples (that is
Trigonometric table: if Columns L and D contain the Legs and Diagonals of right-triangles, then the values in the first column are tan ² or 1/ cos ² The acute angles of the triangles decrease by approximately 1°	Integer numbers A, L, D such that $A^2+L^2=D^2$) In this case, entries are generated by pairs (p, q), with no common divisor, no both odd and such that p>q. L = 2pq, $D=p^2+q^2$ The remaining leg is p^2-q^2
List of possible	e problems for students (using

reciprocals of regular numbers)

Pythagorean triples (that is			٦	rigoı p	nometric table and ythagorean triples
integer numbers A, L, D	line	α	р	q	interpretations
such that $A^2+I^2=D^2$	1	44.76°	12	5	
	23	44.25° 43.79°	1 14	32	
In this case, entries are	4	43.27°	2 05	54	
	5	42.08°	9	4	
Igenerated by pairs (p. g).	6	41.54°	20	9	
S = = = = S = = (1, 5, 5)/	7	40.32°	54	25	
with no common divisor, not	8	39.77°	32	15	
,	9	38.72°	25	12	
both odd and such that	10	37.44°	1 21	40	
	11	36.87°	2	1	
D>a.	12	34.98	48	25	
le. de	13	33.00	50	27	
L = 2pq,	15	31.89°	9	5	
D=p ² +q ²	Eleanor on Plimp	Robson, Words ton 322. The Arr	and Pictures: perican Mathe	New Light	_
The remaining leg is p ² -q ²	Monthly pp. 105-	, Feb., 2002, Vo 120	l. 109, No. 2 (Feb., 2002),	
Trigonometric ta	ble if	Colur	nns I	and	D contain the

ntain the Legs and Diagonals of right-triangles, then the values in the first column are tan² or 1/ cos² -The acute angles of the triangles decrease by approximately 1°

List of possible problems for students (using reciprocals of regular numbers) TABLE 6 From Reciprocal Pairs to Plimpton 322 Entries Short Long 1/x(x - 1/x)/2(x + 1/x)/2 ${(x+1/x)/2}^2$ side Diagonal side Line 2;24 0;25 0;59 30 1;24 30 1;59 00 15 2 49 1 59 2 00 1 ELEANOR ROBSON 2;22 13 20 0;25 18 45 0;58 27 17 30 1;23 46 02 30 1;56 56 58 14 50 06 15 56 07 1 20 25 57 36 2 1:55 07 41 15 33 45 2;20 37 30 0;25 36 0;57 30 45 1:23 06 45 1 16 41 1 50 49 1 20 00 3 2;18 53 20 0;25 55 12 0;56 29 04 1;22 24 16 1;53 10 29 32 52 16 3 31 49 5 09 01 3 45 00 4 2;15 0;26 40 0;54 10 1;20 50 1:48 54 01 40 1 05 1 37 1 12 2.13 20 0.27 0.53 10 1:20 10 1:47 06 41 40 5 19 8 01 6.00 6 1:18 41 20 0.27 46 400.50 54 40 2:09 36 1:43 11 56 28 26 40 38 11 59 01 45 00 2:08 0:49 56 15 1:41 33 45 14 03 45 0:28 07 30 1:18 03 45 13 19 20 49 16.00 8 2;05 0;48 06 12 49 10 00 0;28 48 1;16 54 1;38 33 36 36 8 01 1;35 10 02 28 27 24 26 40 2;01 30 0;29 37 46 40 0;45 56 06 40 1;15 33 53 20 1 48 00 1 22 41 2 16 01 10 1;33 45 0:30 0:45 1:15 45 1 15 1 00 11 1;55 12 0;31 15 0:41 58 30 1;13 13 30 1;29 21 54 02 15 27 59 48 49 40 00 12 1;52 30 0;32 0;40 15 1;12 15 1;27 00 03 45 2 41 4 49 4 00 13 1;51 06 40 0;32 24 0;39 21 20 1;11 45 20 1;25 48 51 35 06 40 29 31 53 49 45 00 14 15 1:48 0:33 20 0:33 20 1:10 40 1:23 13 46 40 28 53 45

Eleanor Robson, New light on Plimpton

On balance, then, Plimpton 322 was probably (but not certainly!) a good copy of a teachers' list, with two or three columns, now missing, containing starting parameters for a set of problems, one or two columns with intermediate results (Column I and perhaps a missing column to its left), and two columns with final results (II–III). All that remains is for us to decide what the problem type might have been. Eleanor Robson

Robson's reasons for stating that the numbers in Plimpton 322 were not thought as Pythagorean triples

- Use of reciprocals
- Use of regular numbers
- · Study of mistakes in the table
- Place of the table
- No similar table.
- No notion of angle

Ancient mathematical texts and artefacts, if we are to understand them fully, must be viewed in the light of their mathematico-historical context, and not treated as artificial, selfcontained creations in the style of detective stories. Eleanor Robson

- Andrew	In Chards	$[\triangle]$	Am	rican se	A CANA
*** <u>*</u> **	5° -	Δ.	Line freehr IM	A usa	
A to be of	4		∠ ^{Laby L}		and the second
Like Opp Chan		A	1384 S. KOTA	m All	1

Plimpton	322 in '	"our" r	numbe	r syste	em
(d/l) ² or (s/l) ²	Short side s	Diagonal d	Row	d²-s²	(d ² -s ²) ^{1/2}
(1).9834028	119	169	1	14400	120
(1).9491586	3367	4825	2	11943936	3456
(1).9188021	4601	6649	3	23040000	4800
(1).8862479	12709	18541	4	182250000	13500
(1).8150077	65	d 97	5	5184	72
(1).7851929	319	181	Ś	129600	360
(1).7199837	2291	3541	7	7290000	2700
(1).6927094	799	1249	8	921600	960
(1).6426694	481	769	9	360000	600
(1).5861226	4961	19.9465	10	41990400	6480
(1).5625	45	75	nteget	3600	60
(1).4894168	V£ 79	se is an	12	5760000	2400
(1).4500174	161	289	13	57600	240
(1).4302388	1771	3229	14	7290000	2700
(1).3871605	56	106	15	8100	90

Plimpton 322

https://www.nytimes.com/2010/11/23/ science/23babylon.html?smid=url-share

1	En la		Index	ME L
		Prest		11-11
	ALS ALL DIT	TANE	it her	St. TH
E P				
Telefinite	White .	- Witter	KH I	KI H
	MANIE			
-	and the states	Flord		1-7
TEF				The second
EKIRE,	and the	NE THE		
delle	En ad	The second	-	

An Exhibition That Gets to the (Square) Root of Sumerian Math - NYTimes - Nov 22, 2010

- First Western owner, George A. Plimpton bequeathed to Columbia University in the mid-1930s.
- Surviving correspondence shows that he bought the tablet for \$10 from a dealer called Edgar J. Banks.
- Banks told him it came from an archaeological site called Senkereh in southern Iraq, whose ancient name was Larsa
- Approximate date of the tablet: 1800 BCE.

Calculation of Areas

Picture from Yale Collection Drawing by Eleanor Robson The American Mathematical Monthly , Feb., 2002, Vol. 109, No. 2 (Feb., 2002), pp. 105-120)

What are the values of a, b and c? What do these numbers represent? What is the purpose of this tablet?

Hint: To find the purpose, consider the arrangement of the numbers with respect to the circle.

Recall The formula for the area A of a circle in terms of the radius r is π .r². The formula for the circumference c of a circle in terms of the radius r is $2.\pi$.r.

Find the formula of the area of the circle in terms of the circumference and π .

How to find (or approximate) π in a desert island.

A trapezoid

Write an equation whose solution will be the answer to the problem below

Do you think this is an actual practical problem? Have you seen aa problem like this before? Can you suggest what the tablet might have been for?

Colophon of Tablet C4: end of the reverse (Neugebauer/Sachs 1945, Plate 13)

I found a stone, (but) did not weigh it; (after) I subtracted one-seventh,

- added one-eleventh,
- (and) subtracted one-thir[teenth],
- I weighed (it): 1 ma-na.
- What was the origin(al weight) of the stone?

The origin(al weight)] of the stone was 1 ma-na, 9½ gin, (and) 2½ se.

- 60 gin = 1 ma-na
- 180 se = 1 gin

Solutions of equations

Educated guess: This problem is giving the instructions to solve a certain kind of equations. Which kind? (Linear, quadratic cubic... one unknown, two three...)

Numbers are in base 60

- 1. I summed the area and my square-side so that it was 0;45.
- 2. You put down 1, the projection.
- 3. You break off half of 1.
- 4. You combine 0;30 and 0;30.
- 5. You add 0;15 to 0;45.
- 6. 1 squares 1.
- 7. You take away 0;30 which you combined from inside 1 so that the square-side is 0;30. Translation by Eleanor Robson

B B/2

1. I summed the area and my square-side so that it was 0;45.

- 2. You put down 1, the projection.
- 3. You break off half of 1.
- 4. You combine ();30 and ();30.
- 5. You add 0;15 to 0;45.
- 6. 1 squares 1.
- 7. You take away **0;30** which you combined
 - from inside 1 so that the square-side is 0;30.
 - Set x = length of the side of the square

Problem from a tablet

How was this formula found? Conjecture: By completing the square X

Write down u, v and w in terms of B and C

- I summed B² and my B times square-side so that it was C.
- 2. You put down **B**, the projection.
- 3. You break off half of **B**.
- You combine (B/2) and (B/2).
- 5. You add (B/2)² to C.
- 6.√((B/2)²+C) squares (B/2)²+C.
- 7. You take away ...u... which you combined from inside ...
 v... so that the square-side is
- ...w...

Translation by Eleanor Robson

- 1.I summed the area and my square-side so that it was 0:45.
- 2.You put down 1, the projection.
- 3. You break off half of 1.
- 4.You combine 0;30 and
- 0;30.
- 5.You add 0;15 to 0;45.
- 6.1 squares 1.
- 7. You take away 0;30 which you combined from inside1 so that the square-side is 0;30.

Translation by Eleanor Robson

Tablets in Cuneiform Deciphering and finding meaning

屁屁屁∧

हरह हरह

TELT

http://www.ams.org/publicoutreach/feature-column/fc-2012-05

A Babylonian Table of ??

	1/n	
2	0.5	Descril
3	0.333333333333333333	such th
4	0.25	Sucht
5	0.2	decin
6	0.166666666666666	(here
7	0.142857142857143	appro
8	0.125	i i r
9	0.1111111111111111	
10	0.1	
11	0.090909090909090909	
12	0.083333333333333333	
13	0.0769230769230769	
14	0.0714285714285714	
15	0.0666666666666666	
16	0.0625	
17	0.0588235294117647	
18	0.05555555555555556	
19	0.0526315789473684	
20	0.05	
21	0.0476190476190476	

Describe the numbers n such the 1/n has a finite decimal development (here you have some approximations that might help.)

n	1/n
22	0.0454545454545455
23	0.0434782608695652
24	0.0416666666666666
25	0.04
26	0.0384615384615385
27	0.037037037037037
28	0.0357142857142857
29	0.0344827586206897
30	0.033333333333333333
31	0.032258064516129
32	0.03125
33	0.030303030303030303
34	0.0294117647058824
35	0.0285714285714286
36	0.0277777777777778
37	0.027027027027027
38	0.0263157894736842
39	0.0256410256410256
40	0.025
41	0.024390243902439

n	1/n	n	1/n
2	0.5	22	0.0454545454545455
3	0.33333333333333333	23	0.0434782608695652
4	0.25	24	0.0416666666666666
5	0.2	25	0.04
6	0.166666666666666	26	0.0384615384615385
7	0.142857142857143	27	0.037037037037037
8	0.125	28	0.0357142857142857
9	0.1111111111111111	29	0.0344827586206897
10	0.1	30	0.033333333333333333
11	0.090909090909090909	31	0.032258064516129
12	0.083333333333333333	32	0.03125
13	0.0769230769230769	33	0.030303030303030303
14	0.0714285714285714	34	0.0294117647058824
15	0.0666666666666666	35	0.0285714285714286
16	0.0625	36	0.0277777777777778
17	0.0588235294117647	37	0.027027027027027
18	0.05555555555555555	38	0.0263157894736842
19	0.0526315789473684	39	0.0256410256410256
20	0.05	40	0.025
21	0.0476190476190476	41	0.024390243902439

Consider the numbers n such the 1/n has a finite decimal development.

n	1/n	C= 1/n with integer fraction separator removed	C.n
2	0.5	5	
4	0.25	25	
5	0.2	2	
8	0.125	125	
10	0.1	1	
16	0.0625	625	
20	0.05	5	
25	0.04	4	
32	0.03125	3125	
40	0.025	25	
50	0.02	2	
lı is	n teger f the dec	raction sepa l imal point	rator

2	30	27 2,13,20
3	20	30 2
4	15	32 1,52,30
5	12	36 1,40
6	10	40 1,30
8	7,30	45 1,20
9	6,40	48 1,15
10	6	50 1,12
12	5	54 1,6,40
15	4	1 1
16	3,45	1,4 56,15
18	3,20	1,12 50
20	3	1,15 48
24	2,30	1,20 45
25	2,24	1,21 44,26,40

What do you think this table is about? Can you find a pattern?

the value within each sexagesimal place is represented in Hindu-Arabic (our) numerals,

places are separated by commas

	r 🖌
₩>₩\$> \mm\m 1>>1 - 1>) ***13% <m 1.<="" th=""><th><<u>x</u></th></m>	< <u>x</u>
4# 1 IF - AP	and a state
	6.7 3-
- FF / #T { / #T [] / #T]	
HT ATTANT HA	The state
HT HT HT	1000
	and in
	1000
<pre>«If Aff 2#II) []</pre>	activences (Stell
III ATT ATT ATT ATT ATT ATT ATT ATT ATT	
≪ मा\$माऐ ा	

Please do not use any other tools (except your mind, writing instruments and a calculator if you *really* need it)

tps://docs.	.google.com/spreadsheets/d/1i5O	ZZAiXE	UIHJgR098cY5ltHyl_d	pidTlx1lPt9eXTg/edit	?usp=sharing	
n	B=1/n in sexagesimal with integer-fraction separator removed	n	B decimal	n.B		
2	30	2	30	60		
3	20	3	20	60		
4	15	4	15	60		
5	12	5	12	60		
6	10	6	10	60		
8	7,30	8	450	3600		
9	6,40	9	400	3600		
10	6	10	6	60		
12	5	12	5	60	n	1/
15	4	15	4	60	2	0.
16	3,45	16	225	3600	5	0.
18	3,20	18	200	3600	8	0.1
20	3	20	3	60	10	0.
24	2,30	24	150	3600	16 U 20).U
25	2,24	25	144	3600	25	0.0
27	2,13,20	27	8000	216000		
30	2	30	2	60		
32	1,52,30	32	6750	216000		
36	1,40	36	100	3600		

		n	'	60^n
		0		1
		1		60
		2		3600
		3	2	16000
		4	12	960000
n	1/n	4 C	12 (n)	960000 n*C(n)
n 2	1/n 0.5	4 C	12 (n)	960000 n*C(n) 10
n 2 4	1/n 0.5 0.25	4 C	12 (n) 5	960000 n*C(n) 10 100
n 2 4 5	1/n 0.5 0.25 0.2	4 C	12 (n) 5 25 2	960000 n*C(n) 10 100 10
n 2 4 5 8	1/n 0.5 0.25 0.2 0.125	4 C 2 1	12 (n) 5 25 2 25	960000 n*C(n) 10 100 10 1000
n 2 4 5 8 10	1/n 0.5 0.25 0.2 0.125 0.1	4 C 2 1:	12 (n) 5 25 2 25 1	960000 n*C(n) 10 100 10 1000 10
n 2 4 5 8 10 16	1/n 0.5 0.25 0.2 0.125 0.1 0.0625	4 C 2 1: 6:	12 (n) 5 25 2 25 1 25	960000 n*C(n) 10 100 10 1000 10 10000
n 2 4 5 8 10 16 20	1/n 0.5 0.25 0.2 0.125 0.1 0.0625 0.05	4 C 2 1: 6:	12 (n) 5 25 22 25 1 25 5	960000 n*C(n) 10 100 10 1000 10 10000 1000

A	В	A in Dec.		B in Dec	A.B
2	30		2	30	60
3	20		3	20	60
4	15		4	15	60
5	12		5	12	60
6	10		6	10	60
8	7,30		8	450	3600
9	6,40		9	400	3600
10	6		10	6	60
12	5		12	5	60
15	4		15	4	60
16	3,45		16	225	3600
18	3,20		18	200	3600
20	3	:	20	3	60
24	2,30	:	24	150	3600
25	2,24		25	144	3600
27	2,13,20		27	8000	216000
30	2		30	2	60
32	1,52,30	:	32	6750	216000
36	1,40		36	100	3600
40	1,30		40	90	3600
45	1,20		45	80	3600
48	1.15		48	75	3600

1 60 2 3600
2 3600
3 216000
4 12960000

Fragment of a circular clay tablet with depictions of constellations (planisphere). Neo-Assyrian. - British Museum

Concrete impact: 360 degrees angle 60 minutes in an hour 60 seconds in a minute

Impact Every culture has mathematics, but some have more than others. The cuneiform cultures of the pre-Islamic Middle East left a particularly rich mathematical heritage, some of which profoundly influenced late Classical and medieval Arabic traditions, but which was for the most part lost in antiquity and has begun to be recovered only in the last century or so. Eleanor Robson -The Uses of Mathematics in Ancient Iraq, 6000-600 BC

Concrete impact:

360 degrees angle

60 minutes in an hour

60 seconds in a minute