

Write down a brief summary of your topic, and the date you are presenting.

Overview


```
Civilizations 3000 years' span
Sumerian
Babylonian
Assyrian
Akkadian
```

- Complicated, syllabic, wedge based or "cuneiform" script.
Trained scribes wrote in tablets
- Hundreds of thousand have arrived to us.
- Most of these tablets are administrative records (memos, receipts, wage records)
Some of these tablets are
- magical rituals,
- law codes,
- vivid descriptions of military campaigns and battles,
- great myths such as the Epic of Gilgamesh

Robson, Eleanor. "Counting in Cuneiform." Mathematics in school 27.4 (1998): 2-9

Tablet Inscribed in Babylonian with a Rituat Ior the
Observances of Eclipess-The Morgan Library and

Describe one or more mathematical developments of the Mesopotamian culture mentioned in this clip.

Ancient Mesopotamia 101- National Geographic https://youtu.be/xVf5kZAOHtQ

A praise poem of Šulgi

I am a king, offspring begotten by a king and borne by a queen.
I, Šulgi the noble, have been blessed with a favourable destiny right from the womb.
When I was small, I was at the academy, where I learned the scribal art from the tablets of Sumer and Akkad.
None of the nobles could write on clay as I could.
There where people regularly went for tutelage in the scribal art, I qualified fully in subtraction, addition, reckoning and accounting.
The fair Nanibgal, Nisaba, provided me amply with knowledge and comprehension
I am an experienced scribe who does not neglect a thing
Nanibgal, Nisaba, The patron goddess of the scribal art.

- Each counter shape represented a specific quantity of a specific commodity.
- Each category of items was counted with special

Cuneiform

 writing: origins, decipherment and texts. numerations or number words $\mathrm{sp} \in$

The Mesopotamian accounting tokens were found in present Iraq, and date from about 4000 BCE. The cone, spheres, and flat disc were measures of cereals: smallest, larger, and largest. The tetrahedron designated a unit of work, perhaps one man-day, or the amount of work performed by one man in one day. (Image by Denise Schmandt-Besserat and the University of Pennsylvania Museum of Archaeology and Anthropology, University of Pennsylvania, Philadelphia.)

Envelope and contents from Susa, Iran, circa 3300 BCE. For instance, the large cone represented a very large measure of grain; the small cones designated small measures of grain. (Image Denise Schmandt-Besserat and Musée du Louvre, Département des Antiquités Orientales, Paris.)

Mesopotamian Writing

According to Schmandt-Besserat, the transformation of three-dimensional tokens to two-dimensional signs to communicate information was the beginning of writing in the Mesopotamia.

Eventually, the tokens were replaced by signs made by their impressions onto solid balls of clay, or tablets
The impressed signs evolved to become cuneiform writing.

Writing seems to have been invented independently by at least by four societies:
Mesopotamia, Egypt, China, Mesoamerica.

Impressed tablets from, Iran, circa 3200 BCE. Each circular impression stood for one large measure of grain; each wedge or conical impression designated a smaller measure of grain.(Image by by Denise Schmandt-Besserat and Musée du Louvre, Département des Antiquités Orientales, Paris.))

Behistun Inscription -the "cuneiform Rosetta stone-

E̛he Ǎeu Jorkễmes Pubished. March 27.1049
Copyyigh
The New Touk Times

Behistun Inscription
-the "cuneiform Rosetta stone-
written in three different cuneiform script languages: Old Persian, Elamite,
and Babylonian (a variety of Akkadian).

Location of the Behistun complex

Code of Hammurabi about 1700 BC
"an eye for an eye, a tooth for a tooth" (lex talionis)

Epic of Gilgamesh

Mesopotamian Mathematics in a slide-nutshell

Example of uses of mathematics

- It was an important task for the rulers of Mesopotamia to dig canals and to maintain them, because canals were not only necessary for irrigation but also useful for the transport of goods and armies.
- The rulers or high government officials must have ordered Babylonian mathematicians to calculate the number of workers and days necessary for the building of a canal, and to calculate the total expenses of wages of the workers.
- There are several Old Babylonian mathematical texts in which various quantities concerning the digging of a canal are asked for.
https://mathshistory.st-andrews.ac.uk/HistTopics/Babylonian mathematics/
K Muroi, Small canal problems of Babylonian mathematics, Historia Sci. (2) 1 (3) (1992), 173-180.

Educated guess: Answer one of the following: what do you think it means

that
a. $7 / 8$ is the coefficient for the height of an equilateral triangle?
b. 1/3 was the coefficient for the diameter of a circle?
c. 1/12 was the coefficient for the area of a circle?

> Procedures to determine lengths, areas and volumes of many kinds of figures.
> The defining component of an equilateral triangle was a side and $7 / 8$ was the coefficient for the height)
> The defining component of the circle was the circumference. The coefficients for
> the diameter was $1 / 3=(0 ; 20)_{60}$
> the area $1 / 12=(0 ; 5)_{60}$

Tables in Tablets

- One of the most amazing aspect of the Babylonian's calculating skills was their construction of tables to aid calculation. Two tablets which date from 2000 BC. give squares of the numbers up to 59 and cubes of the numbers up to 32 .

- Babylonians used the formula

$$
a \cdot b=(1 / 2)\left((a+b)^{2}-a^{2}-b^{2}\right)
$$

to make multiplication easier.

- The Babylonians did not have an algorithm for long division. Instead they based their method on the fact that

$$
A \% B=A \times(1 / B)
$$

and used tables of reciprocals.

Numbers in Cuneiform

Early Sumerian Numerals

1	10	60	600	3600	36000
0	0	0	（0）	0	（0）
small reed ＂oblique	small reed perpendiculor＂	largereed ＂oblique＂		$\begin{gathered} \text { largereed } \\ \text { 'perpendrulos" } \end{gathered}$	

Later Sumerian Numerals

1	10	60	600	3600	36000
F	$<$	Y	$<$	Γ	4
small stylus ＂vertical＂	$\begin{aligned} & \text { small stylus } \\ & \text { "oblique" } \end{aligned}$	large stylus， ＂vertical＂	large stylus， ＂oblique＂	very large stylus， ＂vertical＂	very large stylus， ＂oblique＂

Base 60 was used in Mesopotamian

 mathematics because．．．1．The approximate duration of the year is 60^{2}
2.60 has many divisors（for instance，2，3，4，5 and 6）

3．Of advantages for writing and calculating fractions

9	4 11	482	H／4 31	4 41	Her
172	4T12	《＜1\％ 22	析T	स［14 42	\％${ }^{4}$
而 ${ }^{3}$	4T717 ${ }^{12}$	《简 ${ }^{2} 2$			4
${ }^{4}$	訾 14	《艮 24			＊
篇	䘖 15	《良 25	出器 35	血良 45	4
燚	〈器 16	《器 26	出璐36	等器46	边
\％	侣 17	《 27	出通 37	管管 47	\％
\％ 8	＜ 18	《 28	出 38	管玨 48	1
舞 9	脌 19	《杵 29	出平39	等桃49	
＜10	\＄ 20	4 30	佼	＊	

There are many theories trying to explain base 60

- Theon of Alexandria ($\sim 300 \mathrm{CE}$): 60 is, among all the numbers the most convenient, because, being the smallest among all those which have the most divisors, it is the easiest to handle.

Can you imagine the Sumerians creating a committee to decide on their number base?

- Neugebauer (~1950CE): a decimal counting system was modified to base 60 to allow for dividing weights and measures into thirds.
- Several theories have been based on astronomical events

60 is the product of the number of months (moons) in the year with the number of planets (Mercury, Venus, Mars, Jupiter, Saturn)

- The year was thought to have 360 days was suggested as a reason for the number base of 60 . (However the Sumerians certainly knew that the year was longer than 360 days.)
- The sun moves through its diameter $\mathbf{7 2 0}$ times during a day and, with 12 Sumerian hours in a day. In that way, one can come up with 60.
- Some theories are based on geometry.
an equilateral triangle was considered the fundamental geometrical building block by the Sumerians. Now an angle of an equilateral triangle is 60° so if this were divided into 10, an angle of 6° would become the basic angular unit. Now there are sixty of these basic units in a circle so again we have the proposed reason for choosing 60 as a base. (it assumes 10 as the basic unit for division)

There are many theories trying to explain base 60

Sumerian civilization must have come about through the joining of two peoples, one of whom had base 12 for their counting and the other having base 5 . (5 was used as a number base among a few ancient civilizations). As the two peoples mixed and the two systems of counting were used by different members of the society trading with each other then base 60 would arise naturally as the system everyone understood.

One of the nicest things about these theories is that it may be possible to find written evidence of the two mixing systems and thereby give what would essentially amount to a proof of the conjecture.

There are many theories trying to explain base 60

One can count up to 60 using your two hands. On your left hand there are three parts on each of four fingers (excluding the thumb). The parts are divided from each other by the joints in the fingers. Now one can count up to 60 by pointing at one of the twelve parts of the fingers of the left hand with one of the five fingers of the right hand. This gives a way of finger counting up to 60 rather than to 10 .

E. F. Robertson Suggested: The reason has to involve the way that

 counting arose in the Sumerian civilization (just as 10 became a base in other civilizations who began counting on their fingers, and twenty became a base for those who counted on both their fingers and toes.)

http:///witingcuneiform.blogspot.com

Writing cuneiform

Cuneiform writing: How it was done
https://cuneiform.neocities.org/CWT/Figures/2_keilschrift_hwc.gif

- Annotated bibliography due on 2/27.
- https://www.math.stonybrook.edu/~moira/courses/ mat336-sp2024/bib.htm
- Abstract and outline of the paper. Advise: write an outline for your presentation.

Fractions in base 60 Review

Express numbers a. and b. in Hindu-Arabic numerals

What are the following numbers?

$5 / 60+40 / 3600 \quad 0.944$ or $0 ; 0540 \quad$ Ways of making the medial zero across time $+40 / 60=52 / 3$ or $5 ; 40$ $5 \times 3600+40 \times 60=20,400$ or 54000

First and second numbers

figures from Robson, Eleanor. "Counting in Cuneifiorn." Mathematics in school 27.4 (1998): 2-9

$$
\begin{array}{r}
\frac{21}{80} \quad \text { Recall: we nerd } a_{1}, a_{2}, a_{3} . . . \text { soch that } 2 \text {) } 0 \leq a_{i}<60, \\
3 \frac{12}{80}=\frac{a_{1}}{60}+\frac{a_{2}}{60^{2}}+\frac{a_{3}}{60^{\circ}}+\cdots
\end{array}
$$

$$
\text { A) Note } 0<\frac{21}{10}<1 \text {. }
$$

Express 1/20, 21/80 or $1 / 7$ in cuneiform (answer in Wooclap in base 60)

Consider a number a betwen 0 and 1. We want to write a in base 60.

That is, we want to find numbers $c_{1}, c_{2}, c_{3} \ldots$ such that

1) Each c_{i} is an integer
2) $0 \leq c_{i}<60$
3) $a=\frac{c_{1}}{60}+\frac{c_{2}}{60^{2}}+\frac{c_{3}}{60^{3}}+$
$C_{1}=\lfloor 60 . a\rfloor$ where $\left.L x\right\rfloor$ denotes the longect integen smaller on equal than x.
$a_{1}=60 a-c_{1}$
$c_{2}=L 60 a_{1} \downarrow$
$a_{2}=60 a_{1}-c_{2}$
And so on $\quad\binom{c_{n}=\left\lfloor 60 a_{n-1}\right\rfloor}{ a_{n}=60 a_{n-1}-c_{n}}$
If we reach i suchithat $a_{i}=0$ the process endo.
Review

A school exercise, most likely.

1.What are the values of a, b and c ?

 2.What is do you think the purpose of this tablet?Babylonian approximation of the square root of a number N , starting from a number a such that $\mathrm{a}^{2}<\mathrm{N}$

What is the area of the yellow figure? What is the area of the orange figure? (Express both areas in terms of N, a, and B)

One starts with a rectangle of area \mathbf{N}, with a side of length a.

YBC 7289 is an Old Babylonian clay tablet (circa 1800-1600 BCE) from the Yale Babylonian Collection.
Appears to be a practice school exercise undertaken by a novice scribe.
Contains not only a constructed illustration of a geometric square with intersecting diagonals, but also, in its text, a numerical estimate of $\sqrt{ } 2$ correct to three sexagesimal or six decimal places.
The value demonstrates one of the greatest known computational accuracy obtained anywhere in the ancient world.
It is believed that the tablet's author copied some of the results from an existing table of values and did not compute them himself.
$\sqrt{2}$ tablet

Picture from Yala Collection
Drawing by Eleanor Roboson

Babylonian approximation of the square root of a number N , starting from a number a such that $\mathrm{a}^{2}<\mathrm{N}$.
One starts with a rectangle of area N , with a side of length a .

- The goal is to find a square of area as close to N as possible, so the side of this square will be close to $\sqrt{ } \mathrm{N}$.
- The orange square is what we found. Its area is larger than that of N .
- If $(B / a)<a$ then $B=N$ $\mathrm{a}^{2}>(\mathrm{B} /(2 \mathrm{a}))^{2}$
The new approximation is $a^{\prime}=a+B /(2 a)=a+\left(N-a^{2}\right) /(2 a)$

Babylonian approximation of the square root of a number N when $\mathrm{a}^{2}<\mathrm{N}$

1. Find a such that a^{2} is close to N and $\mathrm{a}^{2}<\mathrm{N}$
2. $\mathrm{N}=\mathrm{a}^{2}+\left(\mathrm{N}-\mathrm{a}^{2}\right)=\mathrm{a}^{2}+\mathrm{B}$
3. $\mathrm{N}=\mathrm{a}^{2}+\mathrm{B}$ is area of the "yellow"shape.
4. Since a^{2} is close to N, the area of the yellow shape is close to the area of the orange square.
5. Hence, the square root of N is close to the square root of the area of the orange square.
6. The square root of the area of the orange square is equal to the length of its side.
7. The length of the side of the orange square is $\mathrm{a}+\mathrm{B} /(2 \mathrm{a})$. Thus, the $a+B /(2 a)$ is the new approximation to $\sqrt{ } \mathrm{N}$.

Babylonian approximation of the square root of a number \mathbf{N} when $\mathrm{a}^{2}>\mathrm{N}$

1. Find a such that a^{2} is close to N and $\mathrm{a}^{2}>\mathrm{N}$
2. $N=a^{2}-\left(a^{2}-N\right)=a^{2}-B$
$3 . N=a^{2}-B$ is area of the
"orange"shape.
3. The area of the orange shape is close to the area of the pink square (the difference is a square smaller than B)
4. Hence, the square root of N is close to the square root of the area of the orange square.

The new approximation is $a^{\prime}=a-\left(a^{2}-N\right) /(2 a)=a+\left(N-a^{2}\right) /(2 a)$
6. The square root of the area of the pink square is equal to the length of its side, a^{\prime}.
7. The length of the side of the orange square is $a-B /(2 a)$. Thus, the $a-B /(2 a)$ is the new approximation to $\sqrt{ } \mathrm{N}$.

Babylonian approximation of the square root of a number \mathbf{N}

Given a guess a, one finds a new guess $a^{\prime}=a+\left(N-a^{2}\right) /(2 a)$. In both cases (whether we start with $a^{2}>N$ or $a^{2}<N$.

> A number and its reciprocal differ in 7 . What is the number?

A reciprocal exceeds its reciprocal by 7.

 What are the reciprocal and its reciprocal?
1.You: break in half the 7 by which the reciprocal exceeds its reciprocal, and $3 ; 30$ (will come up).
2. Multiply $3 ; 30$ by $3 ; 30$ and $12 ; 15$ (will come up).
3.Append [100, the area,] to the $12 ; 15$ which came up for you and $112 ; 15$ (will come up).
4.What is [the square-side of 1] $12 ; 15$? $8 ; 30$.
5.Put down [t8;30 and] 8;30, its equivalent, and subtract $3 ; 30$, the takiltum-square, from one (of them); append $(3 ; 30)$ to one (of them).
6. One is 12 , the other is 5 .
7. The reciprocal is 12 , its reciprocal 5 .

A reciprocal exceeds its reciprocal by 7. What are the reciprocal and its reciprocal?

1. You: break in half the 7 by which the

Numbers are in base 60
reciprocal exceeds its reciprocal, and $3 ; 30$ (will come up).
2. Multiply $3 ; 30$ by $3 ; 30$ and get $12 ; 15$.
3.Append [100, the area,] to the $12 ; 15$ which came up for you and (1 12;15 (will come up)
4.What is [the square-side of 1] $12 ; 15$? $8 ; 30$.
5.Put down [8;30 and] 8;30, its equivalent, and subtract $3 ; 30$, the takiltum-square, from one (of them); append $(3 ; 30)$ to one (of them).
6. One is 12 , the other is 5 .
7. The reciprocal is 12 , its reciprocal 5 .

$$
\begin{aligned}
& u=(3 ; 30)=(1 / 2)(x-1 / x) \quad v^{2}=1+u^{2} \\
& v=(8 ; 30)=(1 / 2)(x+1 / x) \quad \text { Answer } v+1, v-1
\end{aligned}
$$

Note:

Suppose x and y are reciprocal pairs (that is, $x . y=1$) and set

$$
\begin{gathered}
a=1 \\
b=1+((x-y) / 2)^{2} \\
c=1+((x+y) / 2)^{2}
\end{gathered}
$$

Draw a triangle

Then a, b and c are a Pythagorean triple, that is

$$
a^{2}+b^{2}=c^{2}
$$

-Draw a triangle and your first name, and take a photo.
-Drag the photo to https://www.yogile.com/ mat336/upload (the QR code is for that website) or mat336@yogile.com
-Note: You do not need to sign in to Yogile.

Fall 2023

\square

List features common to most drawings (besides the obvious fact that they are triangles)

List features common to most drawings (besides the obvious fact that they are triangles)

A Babylonian typical triangle

Plimpton 322

https://www.nytimes.com/2010/11/23/ science/23babylon.html?smid=url-share

Plimpton 322

- First Western owner, George A. Plimpton bequeathed to Columbia University in the mid-1930s.
- Surviving correspondence shows that he bought the tablet for $\$ 10$ from a dealer called Edgar J. Banks.
- Banks told him it came from an archaeological site called Senkereh in southern Iraq, whose ancient name was Larsa
- Approximate date of the tablet: 1800 BCE.

Plimpton 322: a review and a different perspective
Source: Archive for History of Exact Sciences, September 2011, Vol. 65, No. 5 (September 2011), pp. 519-566
Errors are italicized and underlined
In dark gray, unreadable numbers

Plimpton 322 in "our" number system

$(d / l)^{\wedge} 2$ or (s/ Short side I)^2		Diagonal d	Row
(1). 9834028	119	169	1
(1). 9491586	3367	4825	2
(1). 9188021	4601	6649	3
(1). 8862479	12709	18541	4
(1). 8150077	65	97	5
(1). 7851929	319	481	6
(1). 7199837	2291	3541	7
(1). 6927094	799	1249	8
(1). 6426694	481	769	9
(1). 5861226	4961	8161	10
(1). 5625	45	75	11
(1). 4894168	1679	2929	12
(1). 4500174	161	289	13
(1). 4302388	1771	3229	14
(1). 3871605	56	106	15

Plimpton 322 in "our" number system

$(\mathrm{d} / \mathrm{l})^{2}$ or $(\mathrm{s} / \mathrm{l})^{2}$	Short side s	Diagonal d	Row	$\mathrm{d}^{2}-\mathrm{s}^{2}$	$\left(d^{2}-s^{2}\right)^{1 / 2}$
(1). 9834028	119	169	1	14400	120
(1). 9491586	3367	4825	2	11943936	3456
(1). 9188021	4601	6649	3	23040000	4800
(1). 8862479	12709	18541	4	182250000	13500
(1). 8150077	65	97	5	5184	72
(1). 7851929	319	481	6	129600	360
(1). 7199837	2291	3541	7	7290000	2700
(1). 6927094	799	1249	8	921600	960
(1). 6426694	481	769	9	360000	600
(1). 5861226	4961	8161	10	41990400	6480
(1). 5625	45	75	11	3600	60
(1). 4894168	1679	2929	12	5760000	2400
(1). 4500174	161	289	13	57600	240
(1). 4302388	1771	3229	14	7290000	2700
(1). 3871605	56	106	15	8100	90

Plimpton 322 in "our" number system. Do you see pattern in the numbers of the last column?

| (d/l) $)^{2}$ or (s/l) $)^{2}$ | Short
 side s | Diagonal
 d | Row | $d^{2}-s^{2}$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| $(1) .9834028$ | 119 | 169 | 1 | 14400 |
| $(1) .9491586$ | 3367 | 4825 | 2 | 11943936 |
| $(1) .9188021$ | 4601 | 6649 | 3 | 23040000 |
| $(1) .8862479$ | 12709 | 18541 | 4 | 182250000 |
| $(1) .8150077$ | 65 | 97 | 5 | 5184 |
| $(1) .7851929$ | 319 | 481 | 6 | 129600 |
| $(1) .7199837$ | 2291 | 3541 | 7 | 7290000 |
| $(1) .6927094$ | 799 | 1249 | 8 | 921600 |
| $(1) .6426694$ | 481 | 769 | 9 | 360000 |
| $(1) .5861226$ | 4961 | 8161 | 10 | 41990400 |
| $(1) .5625$ | 45 | 75 | 11 | 3600 |
| $(1) .4894168$ | 1679 | 2929 | 12 | 5760000 |
| $(1) .4500174$ | 161 | 289 | 13 | 57600 |
| $(1) .4302388$ | 1771 | 3229 | 14 | 7290000 |
| $(1) .3871605$ | 56 | 106 | 15 | 8100 |

Plimpton 322 in "our" number system

$(\mathrm{d} / \mathrm{l})^{2}$ or $(\mathrm{s} / \mathrm{l})^{2}$	Short side \mathbf{s}	Diagonal d	Row	$\mathrm{d}^{2}-\mathrm{s}^{2}$	$\left(\mathrm{d}^{2}-\mathrm{s}^{2}\right)^{1 / 2}$
(1). 9834028	119	169	1	14400	120
(1). 9491586	3367	4825	2	11943936	3456
(1). 9188021	4601	6649	3	23040000	4800
(1). 8862479	12709	18541		182250000	13500
(1). 8150077	65	C	5	5184	72
(1). 7851929	319		5	129600	360
(1). 7199837	2291		7	7290000	2700
(1). 6927094		1249	8	921600	960
(1). 6426694		2	9	360000	600
(1). 5861226	4961	8		41990400	6480
(1). 5625			act	3600	60
(1). 4894168		iscan	${ }^{12}$	5760000	2400
(1). 4500174	161	289	13	57600	240
(1). 4302388	1771	3229	14	7290000	2700
(1). 3871605	56	106	15	8100	90

What do you think Plimpton 322 is about and why?

Three interpretations by scholars.
Trigonometric table: if Columns L and D contain the Legs and Diagonals of right-triangles, then the values in the first column are $\tan ^{2}$ or $1 / \cos ^{2}$ The acute angles of the triangles decrease by approximately 1°
Pythagorean triples (that is
integer numbers A, L, D
such that $\left.A^{2}+L^{2}=D^{2}\right)$
In this case, entries are
generated by pairs (p, q),
with no common divisor, not
both odd and such that
$p>q$.
$L=2 p q$,
$D=p^{2}+q^{2}$
The remaining leg is $p^{2}-q^{2}$

List of possible problems for students (using reciprocals of regular numbers)

Pythagorean triples $($ that is
integer numbers A, L, D
such that $\left.A^{2}+L^{2}=D^{2}\right)$
In this case, entries are
generated by pairs (p, q),
with no common divisor, not
both odd and such that
$p>q$.
$L=2 p q$,
$D=p^{2}+q^{2}$
The remaining leg is $p^{2}-q^{2}$

Trigonometric table and pythagorean triples

line	α	p	q
1	44.76°	12	5
2	44.25°	104	27
3	43.79°	115	32
4	43.27°	205	54
5	42.08°	9	4
6	41.54°	20	9
7	40.32°	54	25
8	39.77°	32	15
9	38.72°	25	12
10	37.44°	121	40
11	36.87°	2	1
12	34.98°	48	25
13	33.86°	15	8
14	33.26°	50	27
15	31.89°	9	5

Trigonometric table: if Columns L and D contain the Legs and Diagonals of right-triangles, then the values in the first column are tan ${ }^{2}$ or $1 / \cos ^{2}-$
The acute angles of the triangles decrease by approximately 1°

Robson's reasons for stating that the numbers in Plimpton 322 were not thought as Pythagorean triples

List of possible problems for students (using reciprocals of regular numbers)

table 6 From Reciprocal Pairs to Plimpton 322 Entries								
x	1/x	$(x-1 / x) / 2$	$(x+1 / x) / 2$	$\{(x+1 / x) / 2\}^{2}$	Short side	Diagonal	$\begin{aligned} & \text { Long } \\ & \text { side } \end{aligned}$	Line
2;24	0;25	0;59 30	1;24 30	1;59 0015	159	249	200	1
2;22 1320	0;25 1845	0;58 271730	1;23 460230	1;56 565814500615	5607	12025	5736	2
2;20 3730	0;25 36	0;57 3045	1;23 0645	1;550741 153345	11641	15049	12000	3
2;1853 20	0;25 5512	0;56 2904	1;22 2416	1;53 1029325216	33149	50901	34500	4
2;15	0;26 40	0;54 10	1;20 50	1;4854 0140	105	137	112	5
2;1320	0;27	0;53 10	1;20 10	1;47 064140	519	801	600	6
2;09 36	0;27 4640	0;50 5440	1;18 4120	1;43 1156282640	3811	5901	4500	7
2;08	0;28 0730	0;49 5615	1;18 0345	1;41 3345140345	1319	2049	1600	8
2;05	0;28 48	0;48 06	1;16 54	1;38 333636	801	1249	1000	9
2;01 30	0;29 374640	0;45 560640	1;15 335320	1;35 10022827242640	12241	21601	14800	10
2	0;30	0;45	1;15	1;33 45	45	115	100	11
1;55 12	$0 ; 3115$	0;415830	1;1313 30	1;29 21540215	2759	4849	4000	12
1;52 30	0:32	0;40 15	1;12 15	1;27 000345	241	449	400	13
1:51 0640	0;32 24	0;39 2120	1;1145 20	1;254851 350640	2931	5349	4500	14
1;48	0;33 20	0;33 20	1;10 40	1;23134640	28	53	45	15

Eleanor Robson, New light on Plimpton
On balance, then, Plimpton 322 was probably (but not certainly!) a good copy of a teachers' list, with two or three columns, now missing, containing starting parameters for a set of problems, one or two columns with intermediate results (Column I and perhaps a missing column to its left), and two columns with final results (II-III). All that
remains is for us to decide what the problem type might have been.Eleanor Robson

- Use of reciprocals
- Use of regular numbers
- Study of mistakes in the table
- Place of the table
- No similar table.
- No notion of angle

Ancient mathematical texts and

 artefacts, if we are to understand them fully, must be viewed in the light of their mathematico-historical context, and not treated as artificial, selfcontained creations in the style of detective stories.
Eleanor Robson

https:///www.nytimes.com/2010/11/23/
science/23babylon.html?smid=url-share

Plimpton 322

- First Western owner, George A. Plimpton bequeathed to Columbia University in the mid-1930s.
- Surviving correspondence shows that he bought the tablet for $\$ 10$ from a dealer called Edgar J. Banks.
- Banks told him it came from an archaeological site called Senkereh in southern Iraq, whose ancient name was Larsa
- Approximate date of the tablet: 1800 BCE.

Plimpton 322 in "our" number system

$(\mathrm{d} / \mathrm{l})^{2}$ or $(\mathrm{s} / \mathrm{l})^{2}$	Short side s	Diagonal d	Row	d2-s ${ }^{2}$	$\left(\mathrm{d}^{2}-\mathrm{s}^{2}\right)^{1 / 2}$
(1). 9834028	119	169	1	14400	120
(1). 9491586	3367	4825	2	11943936	3456
(1). 9188021	4601	6649	3	23040000	4800
(1). 8862479	12709	18541		182250000	13500
(1). 8150077	65	Q	5	5184	72
(1). 7851929	319		S	129600	360
(1). 7199837	2291		7	7290000	2700
(1). 6927094		1249	8	921600	960
(1). 6426694		2	9	360000	600
(1). 5861226	4961	1		41990400	6480
(1). 5625			cert	3600	60
(1). 4894168		is,an	${ }^{\text {cog }} 12$	5760000	2400
(1). 4500174	161	289	13	57600	240
(1). 4302388	1771	3229	14	7290000	2700
(1). 3871605	56	106	15	8100	90

Calculation of Areas

Recall

The formula for the area A of a circle in terms of the radius r is
 $\pi . \mathrm{r}^{2}$.
The formula for the circumference cof a circle in terms of the radius r is 2.т.r.

Find the formula of the area of the circle in terms of the circumference and π.

How to find (or approximate) π in a desert island.

Solutions of equations

Write an equation whose solution will be the answer to the problem below

Do you think this is an actual practical problem? Have you seen aa problem like this before? Can you suggest what the tablet might have been for?

[^0]Educated guess: This problem is giving the instructions to solve a certain kind of equations. Which kind? (Linear, quadratic cubic... one unknown, two three...)

Numbers are in base 60

1. I summed the area and my square-side so that it was $0 ; 45$.
2. You put down 1, the projection.
3. You break off half of 1 .
4. You combine $0 ; 30$ and $0 ; 30$.
5. You add $0 ; 15$ to $0 ; 45$.
6. 1 squares 1 .
7. You take away $0 ; 30$ which you combined from inside 1 so that the square-side is $0 ; 30$.

Translation by Eleanor Robson

Write down u, v and w in terms of B and C

1. I summed B^{2} and my B times square-side so that it was C.
2. You put down \mathbf{B}, the projection.
3. You break off half of B.
4. You combine ($B / 2$) and ($B / 2$).
5. You add ($B / 2)^{2}$ to C.
6. $\sqrt{ }\left((B / 2)^{2}+C\right)$ squares $(B / 2)^{2}+C$.
7. You take away ...u... which you combined from inside ... v... so that the square-side is ...w...

Translation by Eleanor Robson

1. I summed the area and my square-side so that it was $0 ; 45$.
2. You put down 1, the projection.
3. You break off half of 1 .
4. You combine 0;30 and 0;30.
5. You add $0 ; 15$ to $0 ; 45$.
6.1 squares 1 .
6. You take away $0 ; 30$ which you combined from inside 1 so that the square-side is $0 ; 30$.

Translation by Eleanor Robson

1. I summed the area and my square-side so that it was $0 ; 45$.
2. You put down 1, the projection.
3. You break off half of 1.
4. You combine 0;30 and 0;30.
5. You add $0 ; 15$ to $0 ; 45$.

How was this formula found?
Conjecture: By completing the square

6. 1 squares 1 .
7. You take away $0 ; 30$ which you combined
from inside 1 so that the square-side is $0 ; 30$.
Set $x=$ length of the side of the squase

Problem from a tablet

Tablets in Cuneiform Deciphering and finding meaning

Deciphering and finding

 meaning. What s this table
about?

Ask for help if you need it
Please do not use any other tools (except your mind and writing instruments)

Tablet 13901
British Museum complete the square problems

Decipher tablet

The first line (partially illegible here) reads
10 a-rà(times) 1 10.

From line 2 on, in this format, the multiplier is left out:
a-rà $2 \quad 20$
a-rà

A Babylonian Table of ??

n	$1 / n$
2	0.5
3	0.333333333333333
4	0.25
5	0.2
6	0.166666666666667
7	0.142857142857143
8	0.125
9	0.111111111111111
10	0.1
11	0.0909090909090909
12	0.0833333333333333
13	0.0769230769230769
14	0.0714285714285714
15	0.0666666666666667
16	0.0625
17	0.0588235294117647
18	0.0555555555555556
19	0.0526315789473684
20	0.05
21	0.0476190476190476

Describe the numbers n such the $1 / n$ has a finite decimal development (here you have some approximations that might help.)

0.0454545454545455

 23 0.0434782608695652 $24 \quad 0.0416666666666667$ $25 \quad 0.04$ $26 \quad 0.0384615384615385$ $\begin{array}{lll}27 & 0.037037037037037\end{array}$ $28 \quad 0.0357142857142857$ $29 \quad 0.0344827586206897$ $30 \quad 0.0333333333333333$ 310.032258064516129 0.031250.0303030303030303
0.0294117647058824
0.0285714285714286 $36 \quad 0.0277777777777778$
$37 \quad 0.027027027027027$
0.0263157894736842
$39 \quad 0.0256410256410256$ 0.025
0.024390243902439

n	1/n	n	1/n	Consider the numbers n such			
2	0.5	22	0.0454545454545455	the $1 / n$ has a finite decimal development.			
3	0.333333333333333	23	0.0434782608695652				
4	0.25	24	0.0416666666666667				
5	0.2	25	0.04				
6	0.166666666666667	26	0.0384615384615385	n	1/n	$C=1 / n$ with integer fraction separator	C.n
7	0.142857142857143	27	0.037037037037037			removed	
8	0.125	28	0.0357142857142857	2	0.5	5	
9	0.111111111111111	29	0.0344827586206897	4	0.25	25	
10	0.1	30	0.0333333333333333	5	0.2	2	
11	0.0909090909090909	31	0.032258064516129	8	0.125	125	
12	0.0833333333333333	32	0.03125	10	0.1	1	
13	0.0769230769230769	33	0.0303030303030303	16	0.0625	625	
14	0.0714285714285714	34	0.0294117647058824	20	0.05	5	
15	0.0666666666666667	35	0.0285714285714286	25	0.04	4	
16	0.0625	36	0.0277777777777778	32	0.03125	3125	
17	0.0588235294117647	37	0.027027027027027	40	0.025	25	
18	0.0555555555555556	38	0.0263157894736842	50	0.02	2	
19	0.0526315789473684	39	0.0256410256410256				
20	0.05	40	0.025	Integer fraction separator is the decimal point			
21	0.0476190476190476	41	0.024390243902439				

A	B	A in Dec.	B in Dec	A.B		
2	30	2	30	60		
3	20	3	20	60		
4	15	4	15	60		
5	12	5	12	60		
6	10	6	10	60		
8	7,30	8	450	3600		
9	6,40	9	400	3600		
10	6	10	6	60	n	$60^{\wedge} \mathrm{n}$
12	5	12	5	60	1	60
15	4	15	4	60		
16	3,45	16	225	3600	2	3600
18	3,20	18	200	3600	3	216000
20	3	20	3	60	3	216000
24	2,30	24	150	3600	4	12960000
25	2,24	25	144	3600		
27	2,13,20	27	8000	216000		
30	2	30	2	60		
32	1,52,30	32	6750	216000		
36	1,40	36	100	3600		
40	1,30	40	90	3600		
45	1,20	45	80	3600		
48	1.15	48	75	3600		

Calendar

Fragment of a circular clay tablet with depictions of constellations (planisphere). Neo-Assyrian. - British Museum

Concrete impact:
360 degrees angle
60 minutes in an hour
60 seconds in a minute

Impact

Every culture has mathematics, but some have more than others. The cuneiform cultures of the pre-Islamic Middle East left a particularly rich mathematical heritage, some of which profoundly influenced late Classical and medieval Arabic traditions, but which was for the most part lost in antiquity and has begun to be recovered only in the last century or so. Eleanor Robson -The Uses of Mathematics in Ancient Iraq, 6000-600 BC

Concrete impact:

360 degrees angle
60 minutes in an hour
60 seconds in a minute

[^0]: I found a stone, (but) did not weigh it; (after) I subtracted one-seventh, added one-eleventh,
 (and) subtracted one-thir[teenth], I weighed (it): 1 ma-na.
 What was the origin(al weight) of the stone?
 The origin(al weight)] of the stone was 1 ma-na, $91 / 2$ gin, (and) 21/2 se.

 - 60 gin = 1 ma-na
 - $180 \mathrm{se}=1 \mathrm{gin}$

