Mathematics in : More about the presentation
Ancient Egypt

等

Egypt Overview
Egyptian Math in a Nutshel

- How do we know what we know
- Scribes and papyri
- The Rosetta Stone
- The Rhind papyrus

1. Multiplication and division
2. Parts (fractions)
3. Method of false position
4. Areas and volumes

- Area of the circle, π !
- Volume of the truncated pyramid.
5.As I was going to st Ives...

Introduction

Welcome to History of Mathematics

MAT 336 - Spring 2024

Useful links

- Course Schedule: The course schedule of Lecture 1 and course schedule of Lecture 2 list what topics were (or will be) covered,
as well as the all course work and deadines.
- Syllabus: The description and policies of this
- Click on each of the names below for addresses, office hours, office location and zoom links.
- Moira Chas Instructor Lecture 1, TuTh 2:30-3:50pm.

Georgina Spence instructor Lecture 2,TuTh 4.5:20pm.
Shuo Gao Grader of Lecture 1.
Daniel Brogan Grader of Lecture 2.

- The list topics, as well as a possible secondary source is here.
- Examples of abstract, outline, slides, paper and presentation from past years. (Note that the required length varied. Also
reauirements for reefencen on one of the papers (paper2.pof) were lighter" than in our course, so the student mentions certain requirements for reference on one of the papers (paper.2.pd) were " "lightert" than in of
facts -which are not common knowiedge- without citation. it is still a wondertul paper.)
Resources: Books, websites and databases to use during the semester
- Links: Readings, course materials and links organized by topic
- Stony Brook Library is a great source of materials, and librarians that can help you.
- There is a great deal of relevant material in the digital database JSTOR, which you can access with your Stony Brook Net $I D$.
- Another great math database is MathSciNet MSC primary classification is 01 . For more details, see here,
- Wikimedia Commons is a good repository of images
- The internet Archive has many books about math history. You can also find books at Project Gutenberg. Both websites are free
because they post material whose copyright has expired. On one hand this is good, because books are easily available, on the
other, some of the material will be outdated. Hence, make sure that you also look tor more ereent texts (for instance in the libaran)
https://www.math.stonybrook.edu/~moira/courses/mat336-sp2024/links.html

Make an educated guess about ancient Egyptian mathematics. Do you think it was developed for practical purposes or for for its own sake? What branch of mathematics was more developed?

Introduction

Ancient Egypt 101 | National Geographic
https://youtu.be/hO1tzmi1V5g
Write down something related to mathematics you heard in this clip.

Ancient Egypt and Mesopotamia

Interesting mathematical developments.
Developed writing systems.
Relatively warm climate, fertile lands.
Flourished along major rivers.
Strong centralized government.
Strong religious life.

Practical science to facilitate

- computation of calendar
- organization of public works
- collection of taxes.

Evidence suggests mathematics' development was motivated by administrative needs.
Initial emphasis on arithmetic and mensuration (that is, determination of areas and volumes).
Later became a more abstract discipline, studied some aspects of math for its own sake. (Although there is some debate
between scholars about this point)

Naqada Tablets - 4th millennium BCE

The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook By Annette Imhausen, Eleanor Robson, Victor J. Katz, Victor J. Katz, Annette Imhausen • 2007

Ancient Egyptian Mathematics in a very small nutshell

－Very few extant sources（math was recorded in fragile papyri．）
－Problems and solutions to concrete algebraic and geometric problems
－finding the area or volume of certain shapes，
－fair division of loaves of bread．
－feeding animals and storage of grain
－solutions of linear equations with one unknown－false position．

Some Problems with theoretical interest
－Adding 7＋ $7^{2}+7^{3} \ldots+7^{5}$
－Examples（as opposed to rules）；how（as opposed to why）
－Doubling and halving were the basic arithmetic operations．
Two number systems：hieroglyphic and a ciphered（used for different purposes）．
－Intriguingly good approximation to TI
－Fractions were written as a sum of parts（fractions of form $1 / n$ ）
－Development of calendar．

Looking at the table of hieratic numerals，what characteristic do you think this number system have？ Why？
Four characteristics of number systems
－Additive：The value of a number is the sum of the values of the numerals．

Ciphered or alphabetic：Numerals design 1，2，．．9，and the powers of 10 （or，more generally，some base）but also to the multiples of this powers

Multiplicative：There are two sets of numerals，the elements of one set represent digits and the elements of the other set represent position．If necessary，a digit and a position symbols are used together，and the values of numerals are multiplied．Finally，all the products are added．
－Positional：The value of each numeral depends on its position．The system consists of a base（a natural numbe greater than one）and a set of numerals representing the numbers from zero to one less than the base．The numbers from zero to the base minus one are the digits in the system．

Credit tables：https：／／mathshistory．st－andrews．ac．uk HistTopics／Egyptian＿numerals／

1	101	100	10003
4	20 ）	＊200	20004
${ }^{3} \boldsymbol{4}$	303	لت4 300	3000 山
－	40	400	4000
7	50 1	تا	5000
${ }^{6}$ \％		600,7	600 \％
72	70	700	${ }^{7000}$ Y
$=$	${ }_{80}{ }^{\prime \prime}$	${ }^{800}$	8000 －m
9	${ }_{90} \mathbf{3}$	${ }_{900} 3$	9000
	Heratic wim	meras	

Number systems in Ancient Egypt | Credit tables： ：htps：／／mathshistory．st－andrews．ac．uk／ |
| :---: |
| Histopiciss／Egyptian | Hieroglyphic numerals

IPIPIPIPIPIP
Example of a hieroglyphic number from a tomb inscription

Both hieroglyphs and hieratic symbols changed over time．Also，a third writing system emerged： demotic．
The versions here of the hieratic numerals date from around 1800 BC．
－Both systems ran in parallel for around 2000 years with the hieratic symbols being used in writing on papyrus，while the hieroglyphs continued to be used when carved on stone．

1	101	$100 \rightarrow$	1000
211	${ }^{20}$ 介	200	2000
14	30 3	H00 30	5000
	${ }_{40}$ 今	400	4000
	50 1	ت300	$5000{ }^{\text {E }}$
2	${ }^{60}$ 르․	600， 7	600 \％
2	70 1	700	200 保
\％$=$	${ }^{80}{ }^{\text {＂}}$	${ }^{800}$	8000
	3	900 3	2000

Hieratic numerals

Topics are posted （with dates）

Next week：class，in Wooclap，I will ask you for a brief summary of your topic．

ChatGPT 3.5

(2) You

Is this correct: In the early 1880s, Felix Klein talked in one of his lectures of the surface that now carries his name.
(a)

ChatGPT
No, that statement is not accurate. Felix Klein did not give lectures in the early 1880 s about a surface carrying his name. The surface you might be referring to is likely the "Klein bottle," a non-orientable surface with interesting mathematical properties. Felix Klein, a German mathematician, did make significant contributions to mathematics, but the Klein bottle was not explicitly mentioned by him.

The concept of the Klein bottle is attributed to another mathematician, Heinrich Scherk, who first described it in 1834. The name "Klein bottle" itself comes from Felix Klein, who discussed it in a more systematic way in the late 19th century, around 1882-1884. However it's crucial to clarify that the Klein bottle was not explicitly named by Klein in his lectures during the early 1880s; rather, it was later associated with him due to his work on the broader field of topology.

Ancient Egypt Numbers

In their long history, Egyptians created more than one system of writing. Some of these systems were used simultaneously.

Ancient Egypt

Writing systems. fertile lands,major river.
 Strong centralized government. TAXES! Strong religious life.

Very few primary sources in math

ses and motivation of mathematics

- computation of calendar
- Arithmetic and mensuration.
- Administrative needs
- organization of public works
- collection of taxes.

Later mathematics became a more abstract discipline, studied some aspects of math for its own sake. (Although there is some debate between scholars about this point)
https://www.math.tamu.edu/~don.allen/history/1000bc/1000bc.html
"It was this king, moreover, who divided the country among all the Egyptians by giving each an equal square parcel of land, and made this his source of revenue, appointing the payment of a yearly tax. And any man who was robbed by the river of a part of his land would come to Sesostris and declare what had befallen him; then the king would send men to look into it and measure the space by which the land was diminished, so that thereafter it should pay in proportion to the tax originally imposed. Perhaps this was the way in which the art of measuring land (geometry) was invented, and passed afterwards into Greece"

How was geometry

 invented, according to Herodotus? Herodotus ($-400 B C$) was an ancient Greek historian who was born in Halicarnassus in the Persian

Bust of Herodotus. 2nd century AD. Roman copy after a
Greek orignal. On display along the portico of the Stoa
reek original. On display along the poritico of the Stoa o
... Cheops became king over them and brought them to every kind of evil: (....) he then bade all the Egyptians work for him. So some were appointed to draw stones from the stone-quarries in the Arabian mountains to the Nile, and others he ordered to receive the stones after they had been carried over the river in boats, and to draw them to those which are called the Libyan mountains; and they worked by a hundred thousand men at a time, for each three months continually. Of this oppression there passed ten years (..) For this they said, the ten years were spent, and for the underground he caused to be made as sepulchral chambers for himself in an island, having conducted thither a channel from the Nile. For the making of the pyramid itself there passed a period of twenty years.

The Rosetta Stone

Rough History of the Rosetta Stone

- Made in 196 BC , on the first anniversary of the coronation of king Ptolemy V , by then a teenager.
- It's a decree issued by Egyptian priests, ostensibly to mark the coronation and to declare Ptolemy's new status as a living god - divinity went with the job of being a pharaoh
- It was the result of hard political negotiations with his extremely powerful Egyptian priests.
- Survived unread through two thousand years of further foreign occupations Romans, Byzantines, Persians, Muslim Arabs and Ottoman Turks, all had stretches of rule in Egypt.
- A French invasion (which was not only military but intellectual) found it in the town of Rosetta (now el Rashid) in 1799
- The French took it as cultural trophy of war. But Napoleon was defeated, and in 1801 the terms of the Treaty of Alexandria, signed by the French, British and Egyptian generals, included the handing over of antiquities - and the Rosetta Stone was one of them.
on the broken side, you can see that in fact there are four. Because there, stencilled on in English, you can read: "CAPTURED BY THE BRITISH ARMY IN 1801; PRESENTED BY KING GEORGE III".
https://www.bbc.co.uk/programmes/articles/3ddDONr8tIPgH7pXwt302Y//episode-transcript-episode-33-rosetta-stone

The Rosetta stone

Decipherment of the Rosetta Stone

- It was hoped that the Egyptian text could be deciphered through its Greek translation.
- Phonetic glyphs in a cartouche containing the name of an Egyptian king of foreign origin, Ptolemy V.
- In the early 1820s Champollion compared Ptolemy's cartouche with others and realised the hieroglyphic script was a mixture of phonetic and ideographic elements.
- Young, meanwhile, largely deciphered demotic using the Rosetta Stone in combination with other Greek and demotic parallel texts.
- New progress was made in the second quarter of the 1800s.

Papyri, reading, writing and math

- Papyri are fragile
- Papyri were expensive (labor intensive production)
- Only about 10 mathematical papyri have survived

Aristotle writes (Metaphysics):
"Thus the mathematical sciences originated in the neighborhood of Egypt, because there the priestly
class was allowed leisure."

- Mostly fragments, except for Rhind and Moscow papyri
- Scholars think that only about 1 or 2% of the population was able to read and write.

Scribes

mage http:/I/commons.wikimedia.org
Very often, in tombs of high officials, the tomb owner is shown as a inspector in sciences of accounting cattle or product, and sometimes several scribes are depicted working together as a group. Several models depict the filling of granaries, and a scribe is always present to record the respective quantities.

Scribes were, among other functions, accountants.
Katz, Victor J., ed. The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook. Princeton University Press, 2007.32

A fragment from Papyrus Anastasi - A fictional letter, which forms part of a debate between two scribes

You are told: "Empty the magazine that has been loaded with

 sand under the monument for your lord-may he live, prosper, and be healthy - which has been brought from the Red Mountain. It makes $\mathbf{3 0}$ cubits stretched upon the ground with a width of $\mathbf{2 0}$ cubits, passing chambers filled with sand from the riverbank. The walls of its chambers have a breadth of 4 to 4 to $\mathbf{4}$ cubits. It has a height of 50 cubits in total. [...] You are commanded to find out what is before it. How many men will it take to remove it in 6 hours if their minds are apt? Their desire to remove it will be small if (a break at) noon does not come. You shall give the troops a break to receive their cakes, in order to establish the monument in its place. One wishes to see it beautiful.The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook By Annette Imhausen, Eleanor Robson, Victor J. Katz, Victor J. Katz, Annette Imhausen • 2007, page 11

The Rhind or Ahmose Papyrus

The Rhind or Ahmes papyrus

Image from the British Museum
https://www.britishmuseum.org/collection/image/36614500
Fragment

About 17×1 feet

Rhind Mathematical Papyrus

${ }^{37}$

Rhind papyrus recent history

- It was acquired by the Scottish lawyer A.H. Rhind in Thebes in about 1858.
- Evidence indicate that these fragments were found in a chamber of a ruined building
- The two sections in the British Museum were linked by a missing section about 18 cm long; the original may have been cut in half by modern robbers to increase its sale value.
- Fragments which partly fill this gap were identified in 1922, in the collection of the New York Historical Society, which had acquired them from Edwin Smith. Smith also acquired a surgical papyrus of about the same date as the Rhind Papyrus, suggesting that these two documents could have come from a cache of early New Kingdom manuscripts.

Adapted Fromm the British Museum curator's comments about the Ahmose or Rhind Papyrus

Image from the British Museum
https://www.britishmuseum.org/collection/image/366145001

The Rhind or Ahmes papyrus beginning

Accurate reckoning for inquiring into things, insight into all that exists,
knowledge of all obscure secrets. This book was copied in regnal year 33, month 4 of Akhet, under the majesty of the King of Upper and Lower Egypt, Awserre, given life, from an ancient copy made in the
time of the King of Upper and Lower Egypt Nimaatre. The scribe
Ahmose writes this copy.

- "Ahmes" or "Ahmose" is writing it a from "ancient writings" (1800 BC or
- "Ahmes" or "Ahmose" is the earlies history of mathematics.

Three types of problem

- pure mathematical problems teaching basic techniques
practical problems, which contain an additional layer of knowledge from their respective practical setting non-utilitarian problems, which are phrased with a pseudo-daily life setting without having a practical application (only very few examples extant)
- No symbols (like + or -)
- No variables (like x)
- Algorithmic: a list of concrete instructions to solve them

The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook By Annette Imhausen, Eleanor Robson, Victor J. Katz, Victor J. Katz, Annette Imhausen • 2007

The Moscow Papyrus

14th problem of the Moscow Mathematical Papyrus

Multiplication in Ancient Egypt

What does it mean to multiply a positive integer A by another positive integer B? (If you prefer, you can explain it with an example, say $A=20$ and $B=45$)

Ancient

 Egyptian multiplication
Find the product of A and B

Set up two columns. Write 1 in the left column and B in the right column.
Keep doubling the number on both columns. Stop when the number on the 1 -column will be greater than A.

Mark all the numbers in the 1column that add up to A. Mark the corresponding numbers on the Bcolumn.

Add the marked numbers of the Acolumn. The sum of these numbers is the product of A.B

Ancient Egyptian multiplication

Find the product of A and B

Set up two columns. Write 1 in the left column and B in the right column.
Keep doubling the number on both columns. Stop when the number on the 1 -column will be greater than A .

Mark all the numbers in the 1column that add up to B. Mark the corresponding numbers on the Bcolumn.
Add the marked numbers of the Bcolumn the sum is the product of A.B

Exercise: Multiply 20 by 45 as we just did, but exchanging the roles of A and B.

EXAMPLE:

145

\square

\square

Recall that a number and the representation of the number in a number systems are two different concepts. There are many ways to represent a given number, but each number is "unique".

In a similar way, multiplication and how multiplication is performed are different concepts. Again, there are many algorithms, that is, many ways to multiply two numbers. But the meaning of multiplication is only one.

Recall that to multiply to positive integers A and B in the Egyptian algorithm, one needs to write one of those numbers, say B, as a sum of powers of 2 , in such a way that each power appears at most once. Is that possible for B? Why or why not?

However,

Rhind Mathematical Papyrus, problem 69

.	80
$\backslash 10$	800
2	160
$\backslash 4$	320
Total	1120

Division in Ancient Egypt

Ancient Egyptian division

Find the quotient of 130 divided by 10 in the ancient Egyptian way.

This computation will be stated as "multiply 10 so to get 130 ". (We can think about this as "solve 10. $x=130$)

Again, we set up two columns, one for , the other one for 10, and we double as much as possible but in such a way hat the B-column does not surpass 130

Mark all the numbers in the 1 -column that add up to 130. Mark the corresponding numbers on the 1 column.
Add the marked numbers of the 1 column. The sum of these number is quotient of 130 divided by 10 .

Ancient Egyptian division

Example: Let's find the quotient of 130 divided by 10 in the Egyptian way.

This computation will be stated as "multiply 10 so to get 130". (We can think about this as "solve 10. $\mathrm{x}=130$)

Again, we set up two columns, one for 1, the other one for 10 , and we double as much as possible but in such a way that the B-column does not surpass 130

- Mark all the numbers in the 1 -column that add up to 130. Mark the corresponding numbers on the 1 column.

Add the marked numbers of the 1-column. The sum of these number is quotient of 130 divided by 10 .

Ancient Egy.ptian division

Find the quotient of A divided by B

This computation will be stated as "multiply B so to get A". (We can think about this as "solve B. $x=A$)

Again, we set up two columns, one for
1, the other one for B, and we double
as much as possible but in such a way hat the B -column does not surpass A .

Mark all the numbers in the 1 -column that add up to A. Mark the
corresponding numbers on the 1 column.
Add the marked numbers of the 1 column. The sum of these numbers is quotient of A divided by B.

\square
\square
$130=80+40+10$
$130 / 10=8+4+1$

1	B
2	$2 B$
4	$4 B$
\cdots	\cdots
2^{n}	$2^{n} B$

n is the largest integer such that $2^{n} B<A$
$\left.\begin{array}{|lc|}\hline \begin{array}{l}\text { Exercise：Find the } \\ \text { quotient of } 420 \\ \text { divided by } 35\end{array} & \begin{array}{l}\text { Find the quotient of } \\ 561 \text { divided by } 17 .\end{array} \\ \text { EXAMPLE：} \\ \text { ANOTHER } \\ \text { EXAMPLE：}\end{array}\right\}$

The fundamental operations of Egyptian arithmetic are adding and doubling．

A multiplicative system Traditional Chinese numerals

Write the numbers below（in traditional Chinese numerals）in Hindu－Arabic numerals．

What does it mean for two planar shapes to have the same area?

That means we can put the same amount of water or some kind of unit into two planar shapes

They must be congruent.
The measurement of area agrees
identical

What do you think the scissor congruence app shows?

Measuring a segment means comparing its length with that of a chosen unit, and finding how many times the unit "fits" into the segment. (Of course, the unit may not "fit" into the segment an integer or fractional number of times.)

Similarly, measuring a planar figure means finding how many times a given unit of area (and/or fractions of that unit) "fits" into the figure.

Finally, measuring a solid can be defined in a similar way.

https://dmsm.github.io/scissors-congruence/

Two planar polygonal shape have the same area if and only if they are scissor congruent

Max Dehn showed that the analogous result does not hold in R^{3}

Max Dehn
Idea: $\quad \sum \quad$ length of edge \otimes dihedral angle $(\bmod Q \pi)$ all edges

Measurement in Egypt: length, area, volume

- Volumes of
- Cylindrical containers.
- Rectangular parallelepipedal containers.
- Truncated pyramid
- Areas of
- Rectangles
- Circles
- Triangles
- Trapezoids
- Division of given area of land into equal-sized fields.
- A quantity related to slope

Denote by V the volume a pyramid with square base A and height A. Denote by C the volume of a cube of side length A (that is, $C=A^{\wedge} 3$) Then:

Denote by P the volume a pyramid with square base A and height A. Denote by C the volume of a cube of side length A (that is, $C=A^{3}$) Then:
(1) $c=P / 2$
(2) $P / 2<C<P$
(3) $\mathrm{C}=\mathrm{P}$

(4) $P<C<3 P$
(5) $\mathrm{C}=3 \mathrm{~B}$
(6) 3 spccap
(7) crap
(8) None of the above

What is the volume of a pyramid of square base?

The Great Pyramid of Giza

Problem 14 of the Moscow Mathematical Papyrus

If someone says to you: a truncated pyramid of 6 for the height and by 4 on the base by 2 on the top. You are two square this 4 ; the result is 16 . You are to double 4 ; the result is 8 . You are to square this 2 ; the result is 4 . You are to add the 16 and the 8 and the 4 ; the result is 28. You have to take $1 / 3$ of the 6 the result is 2 . You have to take 28 two times; the result is 56 . Behold, the volume is 56 . You will find that this is correct

Problem 14 of the Moscow Mathematical Papyrus

Consider a truncated pyramid of square base of side length 4, square top base of side length 2 and height 6 . Complete the
"translation" of the explanations below and give a formula of the volume without performing the computations (Hint: The first 6
lines translate to $4^{\wedge} 2+2.4+2^{\wedge} 2$)
A. If someone says to you:
B. a truncated pyramid of 6 for the height and by 4 on the base by 2 on the top
C. You are to square this 4 ; the result is 16 .
D. You are to double (multiply by 2) 4 ; the result is 8 .
E. You are to square this 2 ; the result is 4 .
F. You are to add the 16 and the 8 and the 4 ; the result is 28 .
G. You have to take $1 / 3$ of the 6 the result is 2.
H. You have to take 28 two times; the result is 56 . Behold, the volume is 56 .
I. You will find that this is correct.

Problem 14 of the Moscow Mathematical Papyrus

A. If someone says to you:
B. a truncated pyramid of H for the height and by A on the base by B on the top.
C. You are two square this A; the result is A^{2}.
D. You are to multiply B by A; the result is A.B.
E. You are to square this B; the result is B^{2}
F. You are to add the A^{2} and the $A \cdot B$ and the B^{2}; the result is $A^{2}+A \cdot B+B^{2}$.
G. You have to take $1 / 3$ of the H the result is $H / 3$
H. You have to multiply $\left(A^{2}+A \cdot B+B^{2}\right)$ by $H / 3$; the result is $\left(A^{2}+A \cdot B+B^{2}\right) H / 3$. Behold, the volume is $\left(A^{2}+A \cdot B+B^{2}\right) H / 3$.
I. You will find that this is correct.

Problem 14 of the Moscow Mathematical Papyrus

Conjecture: to find the formula the truncated pyramid was broken into pieces.

$$
\begin{aligned}
& \text { Note: This 3D "cut and } \\
& \text { paste" is a fundamental } \\
& \text { property of volume. }
\end{aligned}
$$

https://youtu.be/7vtszdW8MTs?t=11

As I was going to Saint Ives, I met a man with seven wives Every wife had seven sacks, Every sack had seven cats Every cat had seven kits; Kits, cats, sacks and wives, How many were there going to Saint Ives?

Image credti: https://www.corrwalls. co. ukststives/as - -wis
going
$\underbrace{}_{\substack{\text { Image ereati } \\ \text { gointps } \\ \text { gotostives }}}$

There are seven old women on the road to Rome Each woman has seven mules; each mule carries seven sacks each sack contains seven loaves; with each loaf are seven knives; and each knife is in seven sheaths. Women, mules, sacks, loaves, knifes, and sheaths, how many are there in all on the road to Rome? (Translation from Fibonacci's Liber Abacci)

Squaring the circle

La Quadrature, 1938. Oil on panel Man Ray

Problem 50 Area of the circle Approximation of π

Problem 50 of Rhind or Ahmes papyrus

Example of a round field of diameter 9 khet. What is its area?
Take away $1 / 6$ of the diameter, namely 1 ; the remainder is 8 . Multiply 8 times 8 ; it makes 64 . Therefore it contains 64 setat of land. Do it thus:

1	9
3	$1 ;$

this taken away leaves 8
18
216
$4 \quad 32$
$\backslash 8 \quad . \quad 64$.
Its area is 64 setat.

A khet is a length of about 50 meters.

A setat is an area (one khet squared)

Problem 50 of Rhind or Ahmes papyrus

Find the formula of the area of the circle that the scribe would have obtained by starting with a circle of diameter d , instead of a circle of diameter 9. (Hint: Start by taking away 1/9 of the diameter, that is d/9.)

By 裂管-OWn work, CC BY-SA 4.0 , https://

Squaring the circle

The area of a disk is a constant (π) times the radius of the circle squared. What is the value of π that Egyptians assumed in their computation of the area of the disk? (in the problem we are
discussing)

Fractions (parts) in Ancient Egypt

Examples of fractions: $1 / 2,3 / 2,1 / 3,2 / 3,1 / 4,20 / 501 \ldots$.
Examples of parts: $1 / 2,1 / 3,1 / 4,1 / 5, \ldots$

Ancient Egyptian Fractions - Parts

- Egyptians knew positive integer numbers ($1,2,3, \ldots$), parts and the fraction $2 / 3$.
In our current understanding, we would say that the only fractions used where either $2 / 3$ or fractions of the form $1 / n$.
All the other fractions were expressed as a sum of parts and $2 / 3$.

We are going to write Egyptian parts as $1 / 2,1 / 3,1 / 4 \ldots$ (and remember that this is not the way parts were written)

The fraction $1 / n$ was expressed in hieroglyphics as with an oval on top. For instance, 1/7 was IIII

In hieratic was $1 / n$ was expressed as n with a dot on top. For instance, 1/7 was

3

The most commonly used fractions had special symbols.

It is the year 1500 BCE.

You are a scribe in Egypt

1. Multiply $1 / 6$ by 17 .
2. Multiply $1 / 5$ by 17 .

$2 /$ n table from the Rhind Mathematical Papyrus		
$2 / 3=1 / 2+1 / 6$	$2 / 5=1 / 3+1 / 15$	$2 / 7=1 / 4+1 / 28$
$2 / 9=1 / 6+1 / 18$	$2 / 11=1 / 6+1 / 66$	$2 / 13=1 / 8+1 / 52+1 / 104$
$2 / 15=1 / 10+1 / 30$	$2 / 17=1 / 12+1 / 51+1 / 68$	$2 / 19=1 / 12+1 / 76+1 / 114$
$2 / 21=1 / 1 / 4+1 / 42$	$2 / 23=1 / 12+1 / 276$	$2 / 25=1 / 1 / 5+1 / 75$
$2 / 27=1 / 18+1 / 54$	$2 / 29=1 / 24+1 / 58+1 / 174+1 / 232$	$2 / 31=1 / 20+1 / 124+1 / 155$
$2 / 33=1 / 22+1 / 66$	$2 / 35=1 / 30+1 / 42$	$2 / 37=1 / 24+1 / 111+1 / 296$
$2 / 39=1 / 26+1 / 78$	$2 / 41=1 / 24+1 / 246+1 / 328$	$2 / 43=1 / 42+1 / 86+1 / 129+1 / 301$
$2 / 45=1 / 30+1 / 90$	$2 / 47=1 / 30+1 / 141+1 / 470$	$2 / 49=1 / 28+1 / 196$
$2 / 51=1 / 34+1 / 102$	$2 / 53=1 / 30+1 / 318+1 / 95$	$2 / 55=1 / 30+1 / 330$
$2 / 57=1 / 38+1 / 114$	$2 / 59=1 / 36+1 / 236+1 / 531$	$2 / 61=1 / 40+1 / 244+1 / 488+1 / 610$
$2 / 63=1 / 42+1 / 126$	$2 / 65=1 / 39+1 / 195$	$2 / 67=1 / 40+1 / 335+1 / 536$
$2 / 69=1 / 46+1 / 138$	$2 / 1=1 / 40+1 / 568+1 / 10$	$2 / 73=1 / 60+1 / 219+1 / 292+1 / 365$
$2 / 75=1 / 50+1 / 150$	$2 / 77=1 / 44+1 / 308$	$2 / 79=1 / 60+1 / 237+1 / 316+1 / 790$
$2 / 81=1 / 54+1 / 162$	$2 / 83=1 / 60+1 / 332+1 / 415+1 / 498$	$2 / 85=1 / 51+1 / 255$
$2 / 87=1 / 58+1 / 174$	$2 / 89=1 / 60+1 / 356+1 / 534+1 / 890$	$2 / 91=1 / 70+1 / 130$
$2 / 93=1 / 62+1 / 186$	$2 / 95=1 / 60+1 / 380+1 / 570$	$2 / 97=1 / 56+1 / 679+1 / 776$
$2 / 99=1 / 66+1 / 198$	$2 / 101=1 / 101+1 / 202+1 / 303+1 / 606$	88

$2 / \mathrm{n}$ table from the Rhind Mathematical Papyrus

$2 / 3=1 / 2+1 / 6$	$2 / 5=1 / 3+1 / 15$	$2 / 7=1 / 4+1 / 28$
$2 / 9=1 / 6+1 / 18$	$2 / 11=1 / 6+1 / 66$	$2 / 13=1 / 8+1 / 52+1 / 104$
$2 / 15=1 / 10+1 / 30$	$2 / 17=1 / 12+1 / 51+1 / 68$	$2 / 19=1 / 12+1 / 76+1 / 114$
$2 / 21=1 / 14+1 / 42$	$2 / 23=1 / 12+1 / 276$	$2 / 25=1 / 15+1 / 75$
$2 / 27=1 / 18+1 / 54$	$2 / 29=1 / 24+1 / 58+1 / 174+1 / 232$	$2 / 31=1 / 20+1 / 124+1 / 155$
$2 / 33=1 / 22+1 / 66$	$2 / 35=1 / 30+1 / 42$	$2 / 37=1 / 24+1 / 111+1 / 296$
$2 / 39=1 / 26+1 / 78$	$2 / 41=1 / 24+1 / 246+1 / 328$	$2 / 43=1 / 42+1 / 86+1 / 129+1 / 301$
$2 / 45=1 / 30+1 / 90$	$2 / 47=1 / 30+1 / 141+1 / 470$	$2 / 49=1 / 28+1 / 196$
$2 / 51=1 / 34+1 / 102$	$2 / 53=1 / 30+1 / 318+1 / 795$	$2 / 55=1 / 30+1 / 330$
$2 / 57=1 / 38+1 / 114$	$2 / 59=1 / 36+1 / 236+1 / 531$	$2 / 61=1 / 40+1 / 244+1 / 488+1 / 610$
$2 / 63=1 / 42+1 / 126$	$2 / 65=1 / 39+1 / 195$	$2 / 67=1 / 40+1 / 335+1 / 536$
$2 / 69=1 / 46+1 / 138$	$2 / 71=1 / 40+1 / 568+1 / 710$	$2 / 73=1 / 60+1 / 219+1 / 292+1 / 365$
$2 / 75=1 / 50+1 / 150$	$2 / 77=1 / 44+1 / 308$	$2 / 79=1 / 60+1 / 237+1 / 316+1 / 790$
$2 / 81=1 / 54+1 / 162$	$2 / 83=1 / 60+1 / 332+1 / 415+1 / 498$	$2 / 85=1 / 51+1 / 255$
$2 / 87=1 / 58+1 / 174$	$2 / 89=1 / 60+1 / 356+1 / 534+1 / 890$	$2 / 91=1 / 70+1 / 130$
$2 / 93=1 / 62+1 / 186$	$2 / 95=1 / 60+1 / 380+1 / 570$	$2 / 97=1 / 56+1 / 679+1 / 776$
$2 / 99=1 / 66+1 / 198$	$2 / 101=1 / 101+1 / 202+1 / 303+1 / 606$	

Problem 3 of the Rhind Mathematical Papyrus

Problem 3 of the Rhind Mathematical Papyrus

Problem 3

$$
{ }_{\text {ir.t my }}
$$

The doing as [it occurs]:

$[1$	$\dot{2}]$ io
2	$1] \dot{j}^{3}$
$[4$	$2] \dot{\mathrm{j}} \mathrm{i} 5$
8	$4\left[\begin{array}{l}3 \\ i \\ \hline\end{array}\right] 30^{4}$
dmd	6 my $[\mathrm{t} \cdot \mathrm{t}] \mathrm{pw}$
Total	$6 ;$ the same, this is.

Image Credit: The Rhind Mathematical
Papyrus translation by Arnolds Buffum Chace

Problem 3 of the Rhind Mathematical Papyrus:
Divide 6 loaves of bread among 10 men.

Problem 3
Divide 6 loaves among 10 men. Each man receives 32310 Proof. Multiply $3 / 230$ by 10 . Do it thus: $\quad 1 \quad 3 / 23 / 1$ $4 \quad 23 / 331 / 5$

Total 6 loaves, which is correct better

NOTE: The symbol + will come MUCH LATER

Explanation from
(in [] and () are comments for us to understand it

Problem 3

Division of 6 loaves among 10 men. [Each man receives $1 / 2+1 / 10$.] (From his reference table.)
For proof multiply $1 / 2+1 / 10$ by 10 . Do it thus:
[If] 1 [part is] $1 / 2+1 / 10$
[then] $\vee{ }_{4}{ }^{\text {[parts are] }} 1+1 / 5$
(From the Recto, $2 \div 5=\begin{gathered}2+1 / 3+1 / 3+1 / 15\end{gathered}$
" $\checkmark 8{ }_{u}{ }_{4}=2 / 3+1 / 10+1 / 30$ (From the Recto, $2 \div 15=1 / 10+1 / 30$.) [Add the fractions on the lines with check marks (since $2+8=10): 1+1 / 5+4+2 / 3+1 / 10$ since $2+8=$
$1+1 / 30=6$.
${ }_{93}$ Total 6 loaves which is correct.

Problem 5 of the Rhind

 Mathematical Papyrus:Divide 8 loaves of bread among 10 men.
Each man receives
$2 / 3+1 / 10+1 / 30$.
Do it thus
$2 / 3+1 / 10+1 / 30$
2
4
8

 $\begin{array}{lll}2 / 15=1 / 1 / 0+1 / 130 & 2117=1 / 1 / 2+1 / 51+1 / 68 & 2 / 13=1 / 18+1 / 1 / 2+1 / 1 / 1 \\ 2 / 19=1 / 12+176+1 / 14\end{array}$ | $221=1 / 4+1 / 42$ | $2223=1 / 12+1 / 276$ | $2125=1 / 15+1 / 75$ |
| :--- | :--- | :--- | $\begin{array}{lll}2127=1 / 1 / 8+1 / 54 & 222 \\ 233 & =1 / 24+1 / 58+1 / 1774+1 / 232 & 231=1 / 20+1 / 1 / 24+1 / 1 / 55\end{array}$ $233=1 / 22+1 / 168 \quad 235=1 / 130+1 / 42 \quad 237=1 / 24+1 / 111+11238$ $239=126+1 / 78 \quad 241=1 / 24+1 / 246+1 / 128$

 $2157=138+11144259=1 / 36+1226++1 / 531$ $263=1 / 42+1 / 1262165=1 / 39++1 / 95 \quad 2 / 67=1 / 40+1 / 335+1 / 536$ $2 / 69=1 / 46+1 / 138 \quad 271=1 / 40+1 / 568+1710 \quad 2 / 33=1 / 60+1 / 219+1 / 292+$

 $293=1 / 162+11186 \quad 295=1160+11380+11570$ $297=1 / 56+1 / 679+1 / 776$ $299=1 / 66+1 / 19822101=1 / 101+1 / 202+1 / 303+1 / 606$$\square$111155$2377=1 / 24+1 / 111+11226$
$2 / 49=1 / 28+1 / 196$
$261=1 / 40+1 / 244+1 / 488+1 / 610$
36
$1 / 66+1 / 19882101=1 / 101+1 / 202+1 / 1005+1$

$$
{ }^{2977=1 / 156+11679+11776}
$$

Problem 5 of the Rhind
Mathematical Papyrus:

> Problem 5
> $\begin{aligned} & \text { Division of } 8 \text { loaves among } 10 \text { men. } \\ & \text { Each man receives } 2 / 3+1 / 10+1 / 30 \text {] (From }\end{aligned}$ $\begin{aligned} & \text { (Each man receives. } 2 / 3+1 / 10+1 / 30 \text {.] (Fr } \\ & \text { his reference table.). } \\ & \text { For proof multiply } 2 / 3+1 / 10+1 / 30 \text { by }\end{aligned}$ $\begin{aligned} & \text { For proon multiply } 2 / 3+1 / 10+1 / 30 \text { by } 10 \\ & \text { Do it thus: }\end{aligned}$ Do it thus: 1 [part is $] \quad 2 / 3+1 / 10+1 / 30$ $\begin{gathered}\text { Ithen] } \sqrt{ } 2 \text { [parts are] } 1+1 / 2+1 / 10 \text { (As } \\ \text { in Problem } 4 \text { [6].). }\end{gathered}$
$\begin{aligned} & \text { (From the Recto, } 2 \div 5=1 / 3+1 / 15 . \\ & \text { [Add the fractions on the lines with check }\end{aligned}$
$\underset{\substack{\text { marks.] } \\ \text { Total } \\ 8 \\ \text { loaves which is correct. }}}{ }$
ivide 8 loaves among 10 men
Each man receives 35310130
Proof. Multiply 38310380 by 10 ; the result is 8 .
rapy $27=1 / 4+1 / 28$ $2 / 13=1 / 8+1 / 152+1 / 104$ $219=1 / 12+1776+1$ $2 / 25=1 / 1 / 5+1 / 75$ $2 / 31=1 / 20+1 / 124+1 / 155$ $2 / 37=1 / 24+1 / 111+1 / 296$ $2143=1 / 42+1 / 36+1 / 129+1 / 301$ $2 / 49=1 / 28+1 / 196$ $2155=1 / 30+1 / 330$ $261=1 / 40+1 / 244+1 / 488+1 / 610$ $267=1 / 40+1 / 335+1 / 1 / 3$ $273=1 / 60+1 / 219+1 / 292+1 / 365$ $279=1 / 60+1 / 237+1 / 316+1 / 790$ $285=1 / 51+1 / 255$ $2191=1 / 70+1 / 130$ $2 / 97=1 / 56+1 / 679+1 / 78$

Method of false position

Problem 24 of the Rhind Mathematical Papyrus:

A quantity and its $1 / 7$ added together become 19.
What is the quantity?

Exercise: Find the

 quotient of 19 divided by 8EXAMPLE:

1	8
2	16
$1 / 2$	4
$1 / 4$	2
$1 / 8$	1

Then the answer is $2+1 / 4+1 / 8$

Problem 24 of the Rhind Mathematical Papyrus:

A quantity and its $1 / 7$ added together become 19 . What is the
quantity?
117
$\begin{array}{lll}\text { Assume } 7 & 11 / 7 & 1\end{array}$
Total 8
18
$12 \quad 16$
1/2 4
$\begin{array}{ll}11 / 4 & 2\end{array}$
11/8 1
Total $21 / 41 / 8$
$\begin{array}{ll}11 & 21 / 41 / 8\end{array}$
l2 41/21/4
14 91/2

Do it thus: $\begin{array}{lll}16 & 1 / 2 & 1 / 8\end{array}$

$\begin{array}{ll}1 / 7 & 21 / 4 \\ 1 / 8\end{array}$
Total 19.

As many times as 8 must be multiplied to give 19, so many times 7 must be multiplied to give the required number.

In other words, find x, so the ratio
$7 / 8=x / 19$
holds.

Problem 24 of the Rhind Mathematical Papyrus:

A quantity and its $1 / 7$ added together become 19 . What is the quantity?

Assume 7.

$\backslash 1$	7
\14	1
Total	8.
1	8
$\backslash 2$	16
1/2	4
\1/4	2
\1/8	1
Total $21 / 418$.	
$\backslash 1$	21418
$\backslash 2$	412314
$\backslash 4$	916

Do it thus: The quantity is $16 \frac{1 / 2}{3} / 8$, Hence, the answer is
$14 \quad 21 / 4 \frac{1 / 8}{}, \quad 7(2+1 / 4+1 / 8)=16+1 / 2+1 / 8$
$\begin{array}{ll}\text { Total } & 19 .\end{array}$

Problem 25 of the Rhind Mathematical Papyrus:

A quantity and its $1 / 2$ added together become 16. What is the quantity?

Problem 25

A quantity and its $1 / 2$ added together become 16. What is the quantity?
Assume 2.

$\backslash 1$	2
$\searrow 1 / 2$	1
Total	3.

As many times as 3 must be multiplied to give 16 , so many times 2 must be multiplied to give the required number.

$\backslash 1$	3
2	6
\backslash	12
$3 / 3$	2
$\backslash 1 / 3$	1
Total 533.	
1	533
$\backslash 2$	1033

Do it thus: The quantity is $103 / 3$

$1 / 2$	$51 / 3$
Total	16.

A careful study of the Rhind Papyrus convinced me several years ago that this work is not a mere selection of practical problems especially useful to determine land values, and that the Egyptians were not a nation of shopkeepers, interested only in that which they could use. Rather I believe that they studied mathematics and other subjects for their own sakes.

The Rhind Mathematical Papyrus, Arnold Buffum Chace

After working on the Rhind Papyrus, with which of the two paragraphs you agree more and why?

The Rhind and Moscow papyri are handbooks for the scribe, giving model examples of how to do things which were a part of his everyday tasks . . . The sheer difficulties of calculation with such a crude numeral system and primitive methods effectively prevented any advance or interest in developing the science for its own sake. It served the needs of everyday life . . . and that was enough.

Mathematics and Astronomy, in The Legacy of Egypt, J. R. Harris (ed.), 27-54, Oxford University Press. - Gerald J. Toomer

Problem 50 of Ahmes Papyrus: Conjectures about how the area of the circle was found.

If D is the diameter of each of the small black disks below then the length of the side of the square of the figure is:

The diameter of the large circle below is approximately n.D where D is the diameter of each of the small black disks. The value of n is...

