Write down something about the beginnings of mathematics that we discussed last week

- All societies develop ideas of number

- Counting as one-to-one correspondence
- Different ways of recording number (what do these ways depend on?)
- Formal definition of number is very hard (difficulty related to the barber paradox)
- Primary sources: A primary source is an original, firsthand, or direct piece of evidence or material that provides information about a particular topic or event.
- A secondary source is a document or material that is created based on information derived from primary sources. In academic research and historical analysis, secondary sources interpret, analyze, or comment on primary sources. They are one or more steps removed from the original events or materials and often involve synthesis, interpretation, or commentary by the author.
- The moment when the helper lowers their 10 fingers and the second helper lifts 1 .

It is crucial to use reliable sources of information.

- There is no need to be scare of paper or the presentation (memorize, master...)
- Beware of the use of AI. Some students who used it to write the paper, submitted a bad paper.
- About Wooclap and absences.
- HWO

Topics!

Number systems

A number system consist on a set of symbols, called numerals, and a set of rules for writing this numerals to represent numbers.

Examples

Examples			
number system	numerals	numbers	rules
Hindu-Arabic ("ours")			
Roman			
Binary			

Number systems

Number systems

A number system consist on a set of symbols, called numerals, and a set of rules for writing this numerals to represent numbers.

Number systems

A number system consist on a set of symbols, called numerals, and a set of rules for writing this numerals to represent numbers.

We are going to consider four characteristics of number systems

- Additive
- Ciphered or alphabetic
- Multiplicative
- Positional

Additive number systems

Number systems

A number system consist on a set of symbols, called numerals, and a set of rules for writing this numerals to represent numbers.
We are going to consider four
characteristics of number systems

- Additive: The value of a number is the sum of the values of the numerals.
- Ciphered or alphabetic
- Multiplicative

Images credits: https://mathshistory.standrews.ac.uk/HistTopics/Egyptian_numerals/

An additive number system: Egyptian Hieroglyphs

numerals:

- based on a scale of 10
- used as far back as 3400 B.C.E.
- mostly for inscription in stones

Write the number 752 in
Egyptian hieroglyphics.
In Wooclap, express
number on the left in
Hindu-Arabic numerals.

An additive number system: Egyptian Hieroglyphs numerals:

- based on a scale of 10
- used as far back as 3400 B.C.E.
- mostly for inscription in stones

Ceremony in which captives and plunder are presented to Egyptian King Narmer (c. 31st century BCE)

Narmer Macenead drawing). The desigin shows c
enthroned in a naos. Ashmolean Museum, OXxord

Decipher with your team 1, 2 and 3 (on the left). Each member of the team writes down their answer individually. You have 7 minutes.

3

Narmer Macehead (drawing). The design shows captives being prosented ion
Pharaoh Nammer entronoed in a naoss Ashmolean Museum, Oxiord.

Ceremony in which captives and plunder are presented to Egyptian King Narmer (c. 31st century BCE)

The scene depicts a ceremony in which captives and plunder are presented to King Narmer, who is enthroned beneath a canopy on a stepped platform. He wears the Red Crown of Lower Egypt, holds a flail, and is wrapped in a long cloak. To the left, Narmer's name is written inside a representation of the palace facade (the serekh) surmounted by a falcon. At the bottom is a record of animal and human plunder; 400,000 cattle, 1,422,000 goats, and 120,000 captives

An additive system

 invented by me| value | 1 | 5 | 25 | 125 |
| :---: | :---: | :---: | :---: | :---: |
| numerals | a | b | c | d |

1.Express abbcdd in Hindu-Arabic numerals.
2.Express 106 in this additive system

Rules:

- Numerals are written from left to right, from the numeral with smallest value to the numeral with largest value. (abbcdd)
- The number of numerals used must be the smallest possible (for instance, we should write "b" instead of "aaaaa")

Answer as many questions as you can

1. What is the maximum number of times a numeral can be repeated in a single number in the Egyptian hieroglyphic number system?
2. Suppose that L is the largest number that can be written in Egyptian hieroglyphics. What is L?
3. Suppose M is the number of numerals in $L(L$ is as in the previous question). What is M ?

A	R	$\boldsymbol{9}$	\&	0	乌d	
1	10	100	1000	10000	100000	10^{6}
Egyptian numeral hieroglyphs						

Ciphered or alphabetic number systems

Number systems

A number system consist on a set of symbols, called numerals, and a set of rules for writing this numerals to represent numbers.
A number system can be.

- Additive:
- Ciphered or alphabetic: Numerals design $1,2, . .9$, and the powers of 10 (or, more generally, some base) but also to the multiples of this powers. Example: Greek Alphabetic

- Multiplicative

- Positional:

Is the Greek alphabetic system additive? Why or why not?

Letter	Value	Letter	Value	Letter	Value
α alpha	1	l iota	10	ρ rho	100
β beta	2	κ kappa	20	σ sigma	200
γ gamma	3	λ lambda	30	τ tau	300
δ delta	4	μ mu	40	v upsilon	400
ε epsilon	5	ν nu	50	φ phi	500
ζ digamma	6	ξ xi	60	χ chi	600
ζ zeta	7	o omicron	70	ψ psi	700
η eta	8	π pi	80	ω omega	800
θ theta	9	Q koppa	90	λ sampi	900

A ciphered number system: Greek Alphabetic

Rule: Numeral in ascending value, from right to left. Repetitions?

1. Write the number 752
in Greek numerals
2. Translate $\sigma \pi \gamma$ to Hindu-Arabic.

Numerals

Letter	Value	Letter	Value	Letter	Value
α alpha	1	r iota	10	ρ rho	100
β beta	2	K kappa	20	σ sigma	200
γ gamma	3	λ lambda	30	τ tau	300
δ delta	4	μ mu	40	v upsilon	400
ε epsilon	5	ν nu	50	φ phi	500
S digamma	6	ξ xi	60	χ chi	600
ζ zeta	7	σ omicron	70	ψ psi	700
η eta	8	π pi	80	ω omega	800
θ theta	9	\mathbf{Q} koppa	90	λ sampi	900

Greek alphabetic system

- Ciphered or alphabetic: Numerals design 0,1 , and the powers of 10 (or, more generally, some base) but also to the multiples of this powers. Example: Greek Alphabetic

Alphabetic Greek: For the numbers 1000 to 9000, they wrote: ' α,' β, ' γ...' ' ${ }^{\prime}$ (For instance, ' β represents 2000)

$$
10000 \text { was written } \stackrel{\alpha}{M}
$$

There were rules for numbers up to 640,000,and even larger

Your questions

Are there any words or questions you don't like about the format and content of students' emails?
How did you choose your future job?
How you became interested in mathematics and your area of study. And how has your identity impacted your path as a mathematician.

I would like to know that if you have enjoyed math all along? Was there a time that you ever feel like math might not be the right path, or you have always loved it?

What initially sparked your interest in math?
What is your favorite mathematical object? Could be geometric, algebraic, etc.

What is your favorite topic to teach in this course?
Why did you choose to study math and which topic is your personal favorite? Besides math, what other subjects and hobbies do you enjoy?

What are your favorite topics regarding math?
What aspects of math are you most interested in and is that what we're going to be focusing on in class.
What mathematics did you mainly focus on studying when you got your PHD

Number systems

A number system consist on a set of symbols, called numerals, and a set of rules for writing this numerals to represent numbers.
A number system can be.

- Additive:
- Ciphered or alphabetic:
- Multiplicative: There are two sets of numerals, the elements of one set represent digits and the elements of the other set represent position. If necessary, a digit and a position symbols are used together, and the values of numerals are multiplied. Finally, all the
 products are added.
- Positional

Multiplicative number systems

A multiplicative system Traditional Chinese numerals

Write the numbers below (in traditional Chinese numerals) in Hindu-Arabic numerals.

Buron, David M. "The history
introduction." Group 3.3 (1985)

[^0]| Multiplicative system 2 | 1525125625312515625 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | numerals representing position | ab c | d | e | | g |
| | digitis (numerals) | | 0 | | 3 | 4 |

1. Write 1060 down the numbers in this system
2.Translate d2 b3 a4 to the Hindu-Arabic number system

Multiplicative number system

- There are two sets of numerals, the elements of one set represent digits and the elements of the other set represent position. If necessary, a digit and a position symbols are used together, and the values of numerals are multiplied. Finally, all the products are added.

Invented multiplicative system 1

1. Translate d 2 c 7 b 3 a 8 from the multiplicative system 1 to the Hindu-Arabic number system.
2. Write 1065 down the numbers in the multiplicative system 1

- There are two sets of numerals, the elements of one set represent digits and the elements of the other set represent position. If necessary, a digit and a position symbols are used together, and the values of numerals are multiplied. Finally, all the products are added

Number systems

A number system consist on a set of symbols, called numerals, and a set of rules for writing this numerals to represent numbers.
Four characteristics of number systems

- Additive:
- Ciphered or alphabetic

$$
\begin{aligned}
& \text { Example } \\
& 345=3.10^{2}+4.10+5 \\
& 5=(101)_{2}
\end{aligned}
$$

- Multiplicative
- Positional: The value of each numeral depends on its position. The system consists of a base (a natural number greater than one) and a set of numerals representing the numbers from zero to one less than the base. The numbers from zero to the base minus one are the digits in the system.

Number systems

A number system consist on a set of symbols, called numerals, and a set of rules for writing this numerals to represent numbers.

We are going to consider four characteristics of number systems

- Additive
- Ciphered or alphabetic
- Multiplicative
- Positional

Positional number systems

Examples of a Positional Systems Around the World

- Binary
- Hindu-Arabic ("ours")
- Mayan
- Babilonian (Mesopotamian)
- Chinese Rod Number System (different from the Traditional Chinese number system we discussed before)
- Positional: The value of each numeral depends on its position. The system consists of a base (a natural number greater than one) and a set of numerals representing the numbers from zero to one less than the base. The numbers from zero to the base minus one are the digits in the system.

Important statement for Positional Number Systems

Integer division:
Given two integers a and b, with $b>0$, there exist unique integers q and r such that $a=b . q+r$ and $0 \leq r<b$

In this figure, $\mathrm{a}=17$. What are

- a is called the dividend,
- b is called the divisor,
- q is called the quotient,
$\cdot r$ is called the remainder. the values of b, q, and r ?

This statement answers the question: What is the maximum number of times \mathbf{b} "enters" into \mathbf{a}, and what is remaining after this maximum number of b is subtracted from a ?
Note: The result works for a, b integers, $b \neq 0$, but we will only work with positive numbers.

Important statement for Positional Number Systems
Integer division: Given two integers a and b , with $\mathrm{b}>0$, there exist unique integers q and r such that $a=b . q+r$ and $0 \leq r<b$, In this figure, $a=27$ (the total umber of blue dots). What are the values of b, q, and r ?

- a is called the dividend,
- b is called the divisor,
- q is called the quotient,
- r is called the remainder.

This statement answers the question: What is the maximum number of times \mathbf{b} "enters" into \mathbf{a}, and what is remaining after this maximum number of b is subtracted from a ?
Note: The result works for a, b integers, $b \neq 0$, but we will only work with positive numbers.

Division Algorithm

Theorem (Integer or Euclidean Division) For each pair a and b of integers, a positive there exists unique integers q and r such that

- $a=q . b+r$
$\cdot 0 \leq \mathrm{r}<\mathrm{b}$. Example: If $\mathrm{a}=83, \mathrm{~b}=20$, then $\mathrm{q}=4$ and $r=3$

$83=4 \times 20+3$

From a base $\mathbf{b} \neq 10$ to base 10 .

If $N=(18,6)_{b}$ then $N=18 . b+6$
For instance, if the base b is 20 , then $N=(18,6)_{20}=18.20+6=376$

Analogously, if $\mathrm{N}=(15,0,10)_{b}$ then $\mathrm{N}=15 . \mathrm{b}^{2}+0 . \mathrm{b}+10$.

From base 10 to base $\mathbf{b} \neq 10$

We are given N (in base 10).
Suppose that we know that $N=(u, v)_{b}$, then $N=u . b+v$, with $0 \leq u, v<b$.
In this case, to write N in base b need to find u and v .

if $\mathrm{N}=100$ and $\mathrm{b}=11$, find u and v .

Recall: Given two integers a and b, with $b>0$, there exist unique integers q and r such that $a=b . q+r$ and $0 \leq r<b$
(N without parenthesis is assumed to be in base 10)

```
A positional system in base Examples
    b (from base b to base 10)
    Consider a positive integer b}\geq2\mathrm{ .
    In a positional number system on base b the numerals are
    0,1, 2,\ldots,b-1.
A number in base b}\mathrm{ is denoted by N=(an, an-1,.., ,a}\mp@subsup{a}{2}{},\mp@subsup{a}{1}{},\mp@subsup{a}{0}{}
where each }\mp@subsup{a}{i}{}\mathrm{ is a base b}\mathrm{ numeral. Hence, to find N in base
10 we compute ann}\mp@subsup{b}{}{n}+\mp@subsup{a}{n-1}{}\mp@subsup{b}{}{n-1}+\ldots+\mp@subsup{a}{1}{}b+\mp@subsup{a}{0}{}
```

Write (2, 10, 5) ${ }_{11}$ in base 10.

Number systems

A number system consist on a set of symbols, called numerals, and a set of rules for writing this numerals to represent numbers.
We are going to consider four
characteristics of number systems

- Additive: The value of a number is the sum of the values of the numerals.
- Ciphered or alphabetic
- Multiplicative
- Positional

Number systems

A number system consist on a set of symbols, called numerals, and a set of rules for writing this numerals to represent numbers.
A number system can be.

- Additive:
- Ciphered or alphabetic:
- Multiplicative: There are two sets of numerals, the elements of one set represent digits and the elements of the other set represent position. If necessary, a digit and a position symbols are used together, and the values of numerals are multiplied. Finally, all the products are added.
- Positional

Number systems

A number system consist on a set of symbols, called numerals, and a set of rules for writing this numerals to represent numbers.
A number system can be.

- Additive:
- Ciphered or alphabetic: Numerals design $1,2, . .9$, and the powers of 10 (or, more generally, some base) but also to the multiples of this powers. Example: Greek Alphabetic
- Multiplicative

- Positional:

Number systems

A number system consist on a set of symbols, called numerals, and a set of rules for writing this numerals to represent numbers.
Four characteristics of number systems

- Additive:
- Ciphered or alphabetic

$$
\begin{aligned}
& \text { Example } \\
& 345=3.10^{2}+4.10+5 \\
& 5=(101)_{2}
\end{aligned}
$$

- Multiplicative
- Positional: The value of each numeral depends on its position. The system consists of a base (a natural number greater than one) and a set of numerals representing the numbers from zero to one less than the base. The numbers from zero to the base minus one are the digits in the system.

Number systems

A number system consist on a set of symbols, called numerals, and a set of rules for writing this numerals to represent numbers.
Four characteristics of number systems

- Additive:
- Ciphered or alphabetic
- Multiplicative

Example

```
345=3.102+4.10+5
```

$5=(101)_{2}$

- Positional: The value of each numeral depends on its position. The system consists of a base (a natural number greater than one) and a set of numerals representing the numbers from zero to one less than the base. The numbers from zero to the base minus one are the digits in the system.

From base 10 to base $b \neq 10$: integer division

From base $b \neq 10$ to base 10: replace

Division Algorithm

Theorem (Integer or Euclidean Division) For each pair a and b of integers, a positive there exists unique integers q and r such that

$$
\cdot \mathrm{a}=\mathrm{q} \cdot \mathrm{~b}+\mathrm{r}
$$

$\cdot 0 \leq r<b$. Example: If $a=83, b=20$, then $q=4$ and $r=3$

$83=4 \times 20+3$

Division Alorithm	
Theorem (Integer or Euclidean Division) For each pair a and b of integers, a positive there exists unique integers q and r such that $\begin{aligned} & \cdot \mathrm{a}=\mathrm{q} \cdot \mathrm{~b}+\mathrm{r} \\ & \cdot 0 \leq \mathrm{r}<\mathrm{b} . \end{aligned}$ Example: If $a=83, b=20$, then $q=4$ and $r=3$	
 ■■■ $83=4 \times 20+3$	

A positional system in 2 Mayan (in Mesoamerica)

Two special numerals

Most likely, these two numerals are from an older additive number system.

All the Mayan numerals

Express the number 752 Mayan number system．
In Wooclap，express 752 in base 20.
For instance， 445 can be expressed as

$$
(1,2,5) _20
$$

Express the number 752 cuneoiform number system．
In Slido，express 752 in base 60.
For instance， 70 can be expressed as $(1,10) _60$
Numerals

71	4711	\＄ 4821	等 71	4 41	＊ 51
972	\＄ 4712	［19\％ 22	449732	＜4\％9 42	－ 775
PT17 3	4 m 13	\＄4itit 23	44977 33		保阫 53
${ }^{4} 4$	4814	《萝 24	出雨 34	校安 44	胝寝54
5	侮 15	《然 25	眎等 35	娎要 45	然滣 55
㗊 6	器 16	《㗊 26	出资 36	娎䑝 46	炏器 56
\％	4 17		栚 37	整骂 47	等 57
8	4 18	《家 28		俈骂 48	造 58
筥9	俈 19	楽 29	煴缶 39	低開49	皿器 59
＜ 10	＜ 420	44． 30	4 40	边	

A positional system in base 60 Mesopotamian

Two special numerals

Y 1 \＆ 10
Most likely，these two numerals are from an older additive number system．

All the Mesopotamian numerals

91	49 11	\＄4921	楽 31		\％ 51
972	4年 ${ }^{12}$	（141922	4K14 32	㛵限 42	挼》 ${ }^{\text {P2 }}$
Tin 3	$4{ }^{4} 13$	44979	\＄4		等黣 ${ }^{53}$
誓 4	退14	4 41	称率 34		
㠰5	御 15	《舞 25	出35	榢桇 45	桵哭55
	器 16	《第 26		煴器 46	奴咖56
7	侣 17	＜ 427	4管 37	矨 47	挼 57
骂 8	〈 18	《 28	44 38	尔器48	熎 58
舞9	儛 19	《在29	算39	边器49	
＜ 10	＜ 20	4fe 30	40	50	

Answer as many questions as you can
1．What is the maximum number of times a numeral can be repeated in a single number in the Egyptian hieroglyphic number system？
2．Suppose that L is the largest number that can be written in Egyptian hieroglyphics．What is L？
3．Suppose M is the number of numerals in $L(L$ is as in the previous question）．What is M ？

Reminder：The Egytpian

hieroglyphic system is additive， the value of a number is the sum of the values of the numerals．

Hieratic script is the cursive form of hieroglyphic. It was used for administrative and literary purposes.
The hieratic numerals below suggest that the hieratic number system is additive, multiplicative, ciphered or positional? Why?

Number systems

A number system consist on a set of symbols, called numerals, and a set of rules for writing this numerals to represent numbers.

We are going to consider four characteristics of number systems

- Additive
- Ciphered or alphabetic
- Multiplicative
- Positional

To count, say, a pile of coconuts, (let's say) she collected a heap of sticks.

For each coconut in the pile, she took a stick.
Each time she took a stick, she said "another one"
When finished, she pointed out the pile of sticks
she took and said "That many".
What happens with these counting systems when there is a need of using large numbers?

Express 20 in base 20.

Is the Roman number system positional？Why or why not？

One of the images from the Golden Record launched in 1977is shown below．
Can you relate it to the topic we are studying，number systems？

－$=1=1$	II－－＝ 12
$\cdots=1-=2$	II－－－＝24
$\cdots=11=3$	｜｜－－｜－－$=100=10^{2}$
$\cdots \cdots=1--=4$	｜ $11 \mathrm{II}-1--=1000=10^{3}$
$\cdots \cdots=\|-\|=5$	$2+3=5$
$\cdots \cdots . . \mid 11-=6$	$8+17=25 \quad 5+\frac{2}{3}=5 \frac{2}{3}$
$111=7$	$\frac{1}{2}+\frac{1}{3}=\frac{5}{6} \quad 2 \times 3=6$
$1---=8$	1， $8 \quad 13 \times 28=364$
$1--\mid=9$	$\frac{1}{3}+\frac{1}{5}=\frac{8}{15}$
$1-1-=10$	

For more info：https：／／voyager．jpl．nasa．gov／golden－record／

Traditional Chinese

1	－	10	十
2	二		
3	三	100	百
4	（6）		
5	五	1000	F
6	六	10，000	葛
7	七		
8	八	100，000	億
9	九		

Butron，David M．＂The history of mathematics：An
introcuction．＂Group 3.3 （1985）

Moira＇s multiplicative system

| | 1 | 5 | 25 | 125 | 625 | 3125 | 15625 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| numerals representing
 position | a | b | c | d | e | f | g |
| digits（numerals） | | 0 | 1 | 2 | | 3 | 4 |

Mesopotamia（base 60）
Y $1<10$

Base 20	Hindu-Arabic ("ours") and Rod numerals	Roman	Binary	Base 60	Moira's Multiplicative system
$(1,5)_{20}$	25	XXV	$(1,1,0,0,1)_{2}$	(25)60	$(1,0,0)_{s=1 \mathrm{c}}$
$(8,15,19)_{20}$	3519	MMMDXIX	$\underset{\substack{(1,1,0,1,1,0,1,1,1, 1,1,1)_{2}}}{ }$	$(58,39)_{60}$	${ }^{(1,0,3, ~ 0, ~ 3, ~ 4) ~}=$
$(5,14,1,5)_{20}$	45625	XLVDCXXV	$\begin{aligned} & (1,0,1,1,0,0,1,0, \\ & 0,0,1,1,1,0,0,1)_{2}^{2} \\ & 0,0,1,0, \end{aligned}$	$(12,40,25) 60$	(2, 4, 3, 0, 0, 0, 0) $=$
(16, 11, 9) ${ }_{20}$	6629	\#MDCXXIX	$\begin{gathered} (1,1,0,0,1,1,1,1,0, \\ 0,1,0,1)_{2} \end{gathered}$	$(1,50,29)_{60}$	$(2,0,3,0,0,4)=29 \mathrm{ae}$

Completed table

Mayan	Hindu-Arabic ("ours")	Roman	Egyptian hieroglyphics	Babylonian Cuneiform	Traditional Chinese	Greek alphabetic
	25	$\times X V$	กロ 141	$\text { <\} } \begin{gathered} 7 \% \\ 7 \end{gathered}$	$\begin{aligned} & F \\ & \pm \end{aligned}$	$K \xi$
$304=(15,4)_{20}$	304	MMMDXIX	99	$\begin{gathered} 301=(5,4) 60 \\ 7 \end{gathered}$		$\tau \delta$
	45625	奴 DCXKV	$\begin{aligned} & 0000 \\ & 77777 \\ & 999999 \\ & n 1 \\ & 11111 \end{aligned}$	$\left\{\begin{array}{c} \{ \\ \{ \end{array}\right\}$	The numeralss 19000 wes not given.	Numends loves than 950 wer not given

Fractions in base 60

Express 1/16 and 1/11 in base 60

[^0]: Burton, David M. The history of mathematics: An introduction." Group 3.3 (1985)

