

China, India, and Islamic World

Difficulties Studying Math History

Large (in space and time).

Not homogeneous (for instance, different languages)
Western centered approach

- tendency to see them as alien or exotic
- accounts from historians or writers with a variety of agendas.
Lack of documents (destroyed by climate, wars, fires, and people)

Some reasons for

 doing mathematics- Astronomy - including computations of the calendar, astrology and cosmology.)
- Religious: Calculating the direction of Mecca for the Islamic world, constructing altars in India.
- Measuring time.
- Land surveying
- Estimating areas and volumes
- Taxation and division of states
- Teaching numeracy to an elite
- Math for the sake of it.

The Indus (or Harappan) civilisation

The Indus (or Harappan) civilisation

- from 2500 BCE to 1700 BCE
- literate, written script with around 500 characters not yet deciphered.
- a quite advanced and accurate, uniform system of weights and measures.
- unclear what caused the decline in the Harappan civilisation.
- a change in climatic patterns or a climatic disaster such flooding or severe drought?
disease spread by epidemic?
- invasion of Indo-Aryans peoples from the north?

The study of mathematical astronomy in India goes back to at least the third millennium BC and mathematics and geometry must have existed to support this study in these ancient times.

$\underset{-2600-1900}{\substack{\text { Teracota Dice (Harapan Civilization) }}}$

Number

 systems in IndiaDid the concept of zero appear first as a number or as a numeral? (Recall 1922 is a number, $0,1,2 \ldots 9$ are the numerals in our decimal number system) Give reasons for your answer.

Zero as a numeral (dates are not completely certain)

The number 605 in Khmer
numerals, (a date that corresponds to AD 683) one of the earliest known uses of zero as a numeral

File:Khmer_Numerals.
For_from_Ine_Sambor_inscripitions:jps

From A BRIEF HISTORY OF ZERO by Kisisen Mcauillin, July 1997 (revised January 2004)
htps://mtmediatinkercommblog/archives/008821.htm

Bakhshali manuscript

- mathematical text
- written on birch bark
- found in present-day Pakistan

- written in Sanskrit
- perhaps the oldest extant manuscript in Indian mathematics.
- It is a list of rules and examples (use of arithmetic, algebra, geometry, and mensuration)
- contains the earliest known Indian use of a zero numeral
- Dated between 200 to 900 (dates are debated, different sections probably have different dates)

Zero in Gwalior

- The city of Gwalior in India is located on the main rail line south from Delhi, just a bit below Agra, the site of the Taj Mahal.
- In Gwalior there is a medieval fort. The fort, remarkable not only for its size and beauty.
- In a temple inside the fort, there is a tablet recording the establishment of a small 9th century Hindu temple on the eastern side of the plateau
- This tablet, which is dated by who wrote the text, records the oldest " 0 " in India for which one can assign a definite date.
https://www.ams.org/publicoutreach/feature-column/fcarc-india-zer

The evolution of decimal
number systems

Higgins, Peter. Number Story: From Counting to Cryptography, Gottingqen: Copernicus, 2008. P. 189.

The evolution of decimal number systems

Image Credit: Khan Academy

Higgins, Peter. Number Story: From Counting to Cryptography, Gottingen:
Coperricus. 2008 . P. 189 :

The evolution of decimal number systems

- There were many ways of naming numbers in

Sanskrit. One system recorded in the early
Vedas

1. eka, Hindu-Arabic numeral system
2. dva,
3. tri,
4. catur,
5. panca,
6. sad,
7. sapta,
8. asta,
9. nava,
10. dasa.

This Hindu system for writing whole numbers involved symbols that gradually changed as they migrated, one variant ending up as our Western symbols $0,1,2, \ldots, 9$. Later Islamic writers extended them to include decimal fractions, thus creating what is now justly known as the HinduArabic system of numeration.

In parallel, other systems coexisted Another system records numbers as the result of a calculation: for example, trisapta represents 21.

- Ptolemy's table of chords gives the chords and their sixtieths for all the arcs from 1 。 to 180°. Most likely, Ptolemy knew about the zero.

Jain Mathematics

Jainism

- Significant between 300BCE to 400 CE

- Strong interest in large numbers for religious purposes.
Mention three classes of numbers: finite, countable infinite and uncountable infinite.
Example:
- Each individual has infinity capacity for liberation and goodness.
-There are infinite number of souls
- Time has no beginning and no end

Religious texts discuss ideas of countability. - Idea of numbers linked to religion.

Empty mind before creating something.

For the Jainism,

the universe was born out of nothingness.

Vedas and Sulbasutras

Vedas

oldest scriptures of Hinduism, compiled oral wisdom starting around 2000 BCE
. written in early Sanskrit
gave instructions for religious purposes.
veda means knowledge

- main source of our knowledge of early mathematics in India.
most important for Math History:
- calendars
- astronomy,
- Sulba-Sutras.

Vedas and Sulbasutras

Vedas and Sulba sutras

Sulba-sutra (sutra means rule, sulba means

 string or chord)- The main sulbasutras were written between 800 and 200 BCE.

appendices to the Vedas

Rituals involved the construction of sacrificial fire altars, measurements of these altars were required to be very precise for a ritual sacrifice to be successful
explained how to make shapes of various kinds (altars, fireplaces, etc) of given area.
stakes and marked cords were used to make right-angled triangles
all that is known about Vedic mathematics is contained in the Sulba Sutras.
each sutra is named after the priest-scholar that wrote it.

Mathematics was studied in families. It was passed down from generation to generation. A family will have a library of mathematical texts that they copied and recopied. It is likely that in times of political uncertainty this tradition was broken.

More about the Sulba sutras

- No proofs or explanations why a statement holds.
- Some constructions are precise and other are approximate.

Sulba sutras Activity 1

https://www.geogebra.org/m/gc5setrq

1. Construct a square (To do it, first click on the Regular Polygon tool, then click twice on the plane to create the endpoints of an edge of the square, finally, click "ok" if the number of sides offered is four, otherwise change it and then click OK)
2. Using the Regular Polygon tool again construct a new square such that one of its sides is one of the diagonals of the first square.
3. Using the area tool, compute the area of the two squares.
4.What is the relation between the areas of the two squares? If you have time, find an explanation for your answer. (answer in the platform)
(Note: You can only move the first two points you constructed, which originally are blue. The rest of the construction depends on these two points).

One of the sutras in the Baudhāyana sūtras compiled （perhaps）between 800BCE and 400BCE．

Euclid＇s elements，300BCE
（Interpreted by Oliver Byrne in 1800）

A diagram proof of the Pythagorean Theorem from Zhoubi Suanjing（ 周髀算經）（1046－256 BCE）．

Activity 2：Explain why the area of the rectangle

 you constructed is the sum of the areas of thegiven squares．
＂The rope which is stretched along the length of the diagonal of a rectangle produces an area which the vertical and horizontal sides make together．＂
https：／／www．geogebra．org／m／ztcsqdum

The Katyayana Sulbasutra gives the following approximation to $\sqrt{ } 2$ ：

> | Increase a unit length by its third |
| :--- |
| and this third by its own fourth less |
| the thirty-fourth part of that fourth |

How many decimals（after the decimal period）of this approximation match the real value of $\sqrt{ } 2$ ？

The Katyayana Sulbasutra gives the
following approximation to $\sqrt{ } 2$:
The measure is to be increased by its third and
this [third] again by its own fourth less the thirty-fourth part [of that fourth]; this is [the value of] the diagonal of a square [whose side
is the measure].

$$
\begin{aligned}
& =1+1 / 3+1 /(3 \times 4)-1 /(3 \times 4 \times 34)=577 / 408 \sim 1.4142156863 \\
& \sqrt{ } 2=1.414213562 \ldots
\end{aligned}
$$

How was the approximation of $\sqrt{ } 2$ found? A conjecture

We do not know, but here is a possible explanation.

- Cut off a strip of width x on the left hand side and bottom to fill in the missing part which has area $(1 / 12)^{2}$
- Then 2.x. $(1+1 / 3+/ 12)=(1 / 12)^{2}$.
- $x=1 /(3 \times 4 \times 34)$

How was the approximation of $\sqrt{ } 2$ found? A conjecture We do not know, but here is a possible explanation.

- Start with two squares, each of area 1.
- We are going to cut up and arrange one of the squares around the other, to make a third square. Ideally, this square should have area 2.

How was the approximation of $\sqrt{ } 2$ found? A conjecture

- Then 2.x. $(1+1 / 3+/ 12)=(1 / 12)^{2}->\quad x=1 / 408=1 /(3 \times 4 \times 34)$
- But there is a little square of side x overlapping. Thus, x satisfies 2.x. $(1+1 / 3+/ 12)-x^{2}=(1 / 12)^{2}$, gives $x=17 / 12-\sqrt{ } 2$

$1+1 / 3+1 /(3 \times 4)-1 /(3 \times 4 \times 34)$
https:///mathshistory.st-andrews.ac.uk/HistTopics/IIdian_sulbasutras/
$>$ little square

What is the value of " π " in the construction "circling the square"?

If it is desired to transform a square into a circle,

- [a cord of length] half the diagonal [of the square] is stretched from the centre to the east [a part of it lying outside the eastern side of the square];
- with one-third [of the part lying outside] added to the remainder [of
the half diagonal], the [required] circle is drawn.

Heading

Math motivations: Need vs curiosity Fifth postulate in Euclid's elements Inca

- Kipus (to represent numbers)

Mayan
Base 20 number system Method similar to modular arithmetic to move between dates in different calendars.
China

- Nine chapters of the Mathematical Ar
- Continuing board (solve linear equations, polynomial, magic squares) Volume of solids (sphere, and slanted pyramid)
Greece
Zeno's paradoxes.
Archimedes apro of π
Euclids Elemtens and its method.
Infinitude of prime numbers.
Pythagorean theorem.
The three impossible problems Platonic solid
- Golden ratio
- Circumference of the earth (Erathostenes)
Diophantus

India

- 2 Aprox

0! (as place holder and NUMBER)
Mesopotamia

- $\sqrt{ } 2$ Aprox
- Base 60 different but arrive to us.
- Method of false position

Area of quadrilaterals.
Egypt

- apro of π
- multi.
- Rhind papyrus
- Rosetta Stone

Aryabhata

Aryabhata

500 CE

Wrote the book Âryabhâtiya

- Compilation of known and new results about astronomy and computational issues
- one of the principal sources for our decimal place-value system, including the use of the zero.
- this text survives in part because it was subject of many commentaries.

Aryabhata wrote: "a place should be 10 times the previous place"

Recall that a radian is a unit of angular measure. Write down a definition of radian. (Hint: see below)

By Lucas Vieira - Own work, Public Domain, https:/Icommons, wikimedia.orgg/w By Lucas veirara - Own work,
index.phppouride25112326

Early trigonometry in India

The Sine function

- Mainly used for astronomy, for computations (using combinations of circles) to predict positions of the planets.
- Use of a function Sine (similar to "our" sine) which related angular and linear measures.
- A circle of fixed radius $\mathrm{R}=3438$ was considered.

Sine(angle) $=3438 \times$ sine(angle)

In a circle of radius 1 , an arc of length 1
determines an angle of 1 radian.

In a circle of radius r, the arc of length r determines an angle of 1 radian.

Early trigonometry in India The Sine function

B central angle

Half chord of $\alpha=$
$(1 / 2) \operatorname{chord}(2 \alpha)=$
$R \sin (\alpha)$

Large numbers and verses

Indian mathematicians transmitted information orally, usually in verse form in Sanskrit.
As in Ptolemaic astronomy, in early Indian astronomy the first task of computing celestial positions is to determine the mean position of a celestial body at a desired time.

These mean motions are presented in the form of simple proportions between the large integer numbers of cycles completed in a certain period of time.
Consequently, the author needs a way of verbally expressing such large integer numbers-about ten decimal digits long-in verse form.

Mathematics in India by Kim Plofker

Early trigonometry in India The Sine function

- A "table" of Sine was in was usually presented as a list in verse of
- twenty-four Sines in the first quadrant
- at intervals of $3 \mathbf{3 / 4}$ 。(225 minutes),
- a rule for linear interpolation to find Sines and arcs

No explanation of how it was derived geometrically

मखि भखि फखि धखि णखि उखि ङखि हस्झ्झ स्ककि किषा श्घकि किघ्व \| घ्लकि किग्र हक्य धकि किच स्ग झश ङ क्ल प्त फ छ कला-अर्ध-ज्यास् ।।		Words from verse	
makhi bhakhi phakhi dhakhi nakhi nakhi ǹakhi hasiha skaki kisga ghakhi kighva I ghlaki kigra hakya dhaki kica sga śjha ǹva kla pta pha cha kala-ardha- jyāh $\\|$	Words from	ghlaki	
	verse	kigra	
	makhi	hakya	
	bhakhi	dhaki	
	phakhi	kica	
	dhakhi		
	nakhi	sga	
	.naki	"sjha-jhasa	
Aryabhata's poem-table of sines	~nakhi	"nva	
	"nakhi	kla	
	hasjha	pta	
	skaki	pha	
	ki.sga	cha	
	"sghaki		
	kighva		

Complete the table -Teams of 3 or 4

https:///docs.google.com/spreadsheets/d/1m RaOfagWoNvBvibHTtqDe66UCucl4/hmmyXSvWFVW8/

Classified consonants	Collassified	Word				value
		Open the link on the course website or use QR code	maki	khi=khax $\mathrm{i}=200$	ma=25	${ }^{225}$
			that	khiekhax $\mathrm{X}=22$	bha=24	${ }^{224}$
ka			phakki			
kha	ya 30		dhama	khikha $\mathrm{i}=200$	dha=19	219
ga	40	- Make a copy of the spreadsheet	makit	khikhha $\mathrm{x}=2200$.na=15	215
gha	50	and share it with me.	max	khikhax $\mathrm{x}=220$	"nas5	${ }^{205}$
na	60		mastha	na=100	sa=90 jhas	199
ca	"sa 70	- Fill the gaps (in yellow)!	staki	k=100	sa=0	191
cha	.sa 80			ki=10	.saso ga=3	${ }^{183}$
ja	sa 90		kigna	ki=100	va=60 ghas	164
jha	ha 100	-	ghaki	$k \mathrm{k}=100$	ghas ${ }^{\text {a }}$ las 50	154
10		P1	nera			
ta 11	Vowels	17- -1	mava	na=100	ya=30 ka=1	${ }^{131}$
.tha 12			drask	dha=19	ki=kaxi=100	119
.da 13		-	डुत	samog	$\mathrm{a}=3$	${ }^{93}$
.dha 14	a 100	1	Tha-mase	"sa	jhas	79
15	100	1 1-4,	"wa	"nas	va=60	${ }^{65}$
16	100^2			ka=1	las50	
tha 17	100^3		pra-	pa=21	ta=16	${ }^{37}$
wa	$100 \wedge 4$			chas 7		7
da 18	100^5					
dha $\quad 19$	ai 100^6	Decomposition		Computation		Value
na ${ }^{20}$	100^7	ka	ka		1	1
pa	au 100^8	ki	ka $\mathrm{xi}^{\text {i }}$		1x100	100
ba ${ }^{\text {ba }}$		gu	gaxu		3×10000	30000
aha 24		gnu	na) xu		(20+3) $\times 10000$	230000
ma 25		khyughr (gha x.r) + (ya +	ha) xu	(4×100^3)	(30+2)×100^2	4,320,000

Aryabhata "sine" table

Word from verse	Number from verse Number from formula	$\begin{aligned} & \text { Angle (in } \\ & \text { degrees) } \end{aligned}$	$\begin{aligned} & \text { Angle in } \\ & \text { radians) } \end{aligned} \begin{aligned} & \text { Total from } \\ & \text { verse } \end{aligned}$	$\begin{aligned} & \text { Total for } \\ & \text { verse/3438 } \end{aligned}$	Number/ (180*60/Pi)	Actual sine	sin(real)-(Number/ (180*60/Pi)-sin
	0	00	0.0000	00.00000	0.00000	0.00000	0.0000000
makhi	$225 \quad 225.00$	$225 \quad 4$	$0.065{ }^{225}$	0.06545	0.06545	0.06540	-0.0000467
bhakhi phaki diakhi .nakhi	Word from verse	Number from verse	Number from formula	Angle (in minutes)	Angl degr	$\begin{aligned} & \text { e (in } \\ & \text { ees) } \end{aligned}$	Angle (in radians)
"nakhi		0		0		0	0.000
hasha	makhi	225	225.00	225		4	0.065
${ }_{\text {k }}^{\text {ki.sga }}$ /shaki	bhakhi	224	224.00	450		8	0.131
kighva	phakhi	222	222.00	675		11	0.196
kigra	dhakhi	219	219.02	900		15	0.262
dhaki	.nakhi	215	215.07	1125		19	0.327
sga	~nakhi	210	210.16	1350		23	0.393
"nva	"nakhi	205	204.31	1575		26	0.458
pra	hasjha	199	197.56	1800		30	0.524
${ }^{\text {pha }}$ cha	skaki	191	189.92	2025		34	0.589
	ki.sga	183	181.45	2250		38	0.654

Aryabhata's explanation of his system for denoting numbers

- The classified consonants [starting] from k [are encoded] in the square [places],
- the non-classified consonants, [starting from] y which is [equal to] n'm, to the non-square [places].
- Nine vowels [are assigned] to the square and non-square [places] in a double nine-tuple of zeros, and [beyond] the square [places] ending with nine.

Mathematics in India by Kim Plofker

Aryabhata sine table

Origin of the word "sine"

jya The mathematical technical term jya (bowstring) appears originally to have meant "chord."

- ardhajya Later the term ardhajya "half-chord," denoted the Sine.
jya People dropped the "ardha" and kept "jya."
jiba When Arabic writers translated his works from Sanskrit into Arabic, they referred it as jiba.
jb Since in Arabic writings, vowels are omitted, it was abbreviated as jb.

jaib Later writers substituted jb with "jaib", meaning "pocket" or "fold (in a garment)".
sinus Later in the 12th century, these writings were translated from Arabic into Latin, the Arabic jaib was replaced with its Latin counterpart, sinus, which means "cove" or "bay" which is the word that arrived to us.

Sanskrit Poetry

Let's write down verses (in English!) reinterpreting the rules as follows: Each mora (or "syllabic instant") is a word, - beat is a syllable of the word				
	able butter	narrow orange	Examples of one and two syllables words (for	
Each of the words we use is: - Short, lasting 1 syllable (one beat), denoted by S. (for instance: "green") - Long, lasting 2 syllables (2 beats), denoted by b. (for instance,"purple")	diama	purple quibble	inspiration)	
		ripple	ant bike	no
	gallo	teacher	dog	${ }_{\text {queen }}$
		very	eat	run
	jingle		fish	six the
		x-ray	good	the
		yellow	have	van
maple			jump	was
			king	
			live	yes
Find verses of 3 syllables state their type. Example: Math is great- SSS				

Between 600 and 800 CE, in India, a poet named Virahanka gave a rule for counting certain variations in a given rhythm of Sanskrit poetry.

The basic units in Sanskrit poetry are mora or "syllabic instant" which can be either

- Short, lasting 1 beat, denoted by S.
- Long, lasting 2 beats, denoted by L.

Thus, we have
exactly one verse type lasting one beat - S
exactly two verses types lasting two beats - SS and L exactly three verses types lasting three beats: SSS, SL and LS

Let's write down verses (in English!) reinterpreting the rules as follows:
Each
mora (or "syllabic instant") is a word,
beat is a syllable of the word
Each word is either:

- Short, lasting 1 syllable (one beat), denoted by S. (for instance: "green")
- Long, lasting 2 syllables (2 beats), denoted by L. (for

able	narrow
butter	orange
cable	purple
drama	quibble
even	ripple
follow	silly
gallop	teacher
happy	untrue
icy	very
jingle	water
kitten	x-ray
little	yellow
maple	zebra

 instance,"purple")
Find verses of 5 syllables and state their type. Example: My students are smart - SLSS

Thirteen ways of arranging long and short syllables in a cadence of length six. Eight end with a short syllable and five (F5) end with a long syllable.

How many types of verses of one syllable are there? How many of two? three? four? five?

Let's write down verses (in English!) reinterpreting the rules as follows: Each
mora (or "syllabic instant") is a word,
beat is a syllable of the word
Each word is either:

- Short, lasting 1 syllable (one beat), denoted by S. (for instance: "green")
- Long, lasting 2 syllables (2 beats), denoted by L. (for instance,"purple")

\# of Rythms of N syllables composed by
 short and long words.

Types of words we can use for verses

- Short, lasting 1 syllable, denoted by I.

1	- Long, la (for inst
2	2 (ss, I)
3	3(sss,sl, l)
4	5(ssss, II, sls, ssl, liss)
5	8 (sssss, lls, Isl, sll, Isss, slss, ssls, ssl)
6	
7	

Why the Fibonacci numbers count the number of rhythms of n syllables?

Fibonacci numbers in the Liber Abaci (1202)

"A certain man put a pair of rabbits in a place surrounded on all sides by a wall. How many pairs of rabbits can be produced from that pair in a year if it is supposed that every month each pair begets a new pair which from the second month on becomes productive?"

https://mathigon.org/course/sequences/fibonacci

Fibonacci numbers in the Liber Abaci (1202)
"A certain man put a pair of rabbits in a place surrounded on all sides by a wall. How many pairs of rabbits can be produced from that pair in a year if it is supposed that every month each pair begets a new pair which from the second month on becomes productive?"

Imagine that you've received a pair of baby rabbits, one male and one female. They are very special
rabbits, because they never die, and the female one gives bitth to a new pair of frabbits exactly once
every month (always another pair of male and female).

https://mathigon.org/course/sequences/fibonacci

Pingala binomial coefficients triangle. https:/Jarchive.org/details/
Prakitipingalaprastarava
trapagenenimimodel/2up

Yang Hu's triangle in Jade Mirror
of the Four unknowns, a matemeur Unknowns, a
dateod 1303 .
dwork by ZZu Shiiie,

Pascals Pascal Tiriange Bliase Pascal -

Pingala (~250 BCE) classifying poetic meters of long and short syllables, presents the Mount Meru (known now as Pascal Triangle)

Prince and princess playing chess 19th century

The game of chess was born in India during the Gupta dynasty in the 6th century. Today, more than 1500 years later, it is played in 172 countries. In this exhibit, curators from Salar Jung
Museum, Hyderabad take us on a tour of the story of chess. https://
artsandculture.google.com/ exhibit/a-game-of-thrones-how-chess-conquered-the-world/ JwliNIxUQVZ2Kg

The ingenious method of expressing every possible number using a set of ten symbols (each symbol having a place value and an absolute value) emerged in India. The idea seems so simple nowadays that its significance and profound importance is no longer appreciated. Its simplicity lies in the way it facilitated calculation and placed arithmetic foremost amongst useful inventions. the importance of this invention is more readily appreciated when one considers that it was beyond the two greatest men of Antiquity, Archimedes and Apollonius
Laplace

```
From Eric Mazur Slides
```


