

Important: log in to the platform with your SB email

$\xrightarrow{H K P E N T}$
(2) 2
Send © Нкреел to
\qquad

Write down your first name and something you like about math.

What is mathematics?

- Make groups of four students and go to a blackboard.
- Introduce yourself to the members of your group and exchange coordinates for future communication.
- Write down a definition of mathematics that you agree with (do not use sources other than your group to maximize your learning).
- You have 5 minutes.

What is mathematics?

What is mathematics?

Write down in Wooclap your own definition.

What is

 mathematies?
What do you mean by mathematics?

Fundamental type of question

All science requires mathematics. The knowledge of mathematical things is almost innate in us! This is the easiest of sciences, a fact which is obvious in that no ones brain's rejects it; for laymen and people who are utterly illiterate know how to count and reckon.

"Pure mathematics is, in its way, the

 poetry of logical ideas. One seeks the most general ideas of operation which will bring together in simple, logical and unified form the largest possible circle of formal relationships. In this effort toward logical beauty spiritual formulas are discovered necessary for the deeper penetration into the laws of nature."Albert Einstein, Obituary for Emmy

Albert Einstein

What is mathematics?

In the 1950s, Sawyer described mathematics as the "classification and study of all possible patterns" He explained that pattern was meant "to cover almost any kind of regularity that can be recognized by the mind".
W. W. Sawyer, Prelude to Mathematics, 1955

Do you find a pattern?

In this course, by

 mathematics we mean study of ideas related to number, space and shapes, patterns and structure.

I have said that the love of study is the passion most necessary to our happiness. It is an unfailing resource against misfortunes, it is an unending source of pleasures,...

Madame du Châtelet

~1700

Gabrielle Émilie Le Tonneier de Bretevil., marquise du chầelet (1706-1749), French
J'ai dit que l'amour de l'étude étoit la passion la plus nécessaire à notre bonheur : c'est une ressource sûre contre les malheurs ; c'est une ressource de plaisirs inépuisable,

The Ishango bone and its interpretations

Dolní Věstonice (in Czech Republic) archeological site

- From (roughly) 27,000 to 20,000 B.C

Many archeological artifacts.
Representations of men, women, and animals, along with personal ornaments, human burials and engravings.

Carved female head from Dolni
Vestonice, $\mathrm{krahultz-Museum}$
(replica)
Source: Wikipedia

Tally Stitks of the Stine Age

The Wolf Bone of Dolni Vestonice

Let's distinguish conjectures from facts!

"All history is contemporary history." Benedetto Croce

"As the South African archeologist David Lewis-Williams says of prehistoric art, 'Meaning is always culturally bound'"
R. Leaky - The origin of humankind
"We do not see things as they are, we see them as we are." Anais Nin, probably quoting from the Talmud.

Are other cultures so different that they are incomprehensible to us?

Did Neanderthals count?

Hyena Bone, about 60,000 years old, found in France

Recall: Ishango
bone, 20,000BCE

Can you see any math in these photos?

Reprocuctions one of Lascaux artworks by Jack Versloot (about 17,000 years old)

Lebombo bone about 44,000 years old

Reindeer antler of Little Salt Spring, Florida, about 8000BCE

The reindeer antle of Little Salt Spring, Florida, with a colleagu's hand for
suggests that the marks were
made systematically.

- 29 incisions
- very regular
- about five millimeters long
- the spacing between them is consistent
- smaller etchings in one-to-one alignment with the larger incisions and next to them, suggest that quantities were
ticked off along that progression. Source: Numbers and the Making of Us: Counting and the Course of Human Cultures, by Caleb
Everett, 2017, Hararard Univessity Presss

Blanchard "calendar" bone

Photo: Don Hitchcock 2015
Source: Facsimile, Musée d'Archeologie Nationale et Domaine, St-Germain-en-Laye

This bone suggests that its creator(s) were deliberately representing numerical concepts materially.

Recall: Ishango
bone, 20,000BCE
Can you see any math in these photos? world or about the world of ideas embodied in laws and even theology. It grows like a plant, from a seed that germinates and later ramifies to produce roots, branches, leaves, flowers, and fruit. It is constantly growing. Roger Cooke - The history of Mathematics Third Edition

Reproductions one of Lascaux artworks by Jack Versloot (about 17,000 years old)

Administrative stuff

Course Website and Wooclap

- We are going to use the interactive platform Wooclap for questions, polls and surveys.
- You will be able to answer the questions in this platform from a web browser or a smart phone app.

Course Website

Note: A quick way to

https://www.math.stonybrook.edu/
~moira/courses/mat336-sp2024 find the course website is googling my name, go to my website and find there the link for the course.

The schedule

Schedule for MAT 336 - Spring 2024 - Lecture 1

- The list of topics of this schedule is tentative and will be updated with the progress of the class
- Please post a comment in the Discussion Form in Brightspace if you find a mistake, broken link or something confusing
- The suggested articles for presentataions and paper are here
- The presentation topics will be assigned before the second week of clas
- Each assignment of the schedule is listed on its due date.

Date \quad \# \quad Topics
Quirzes and Assignments Due Dates Presentations

Tu ${ }^{123} 1$ Beginnings of mathematics, info about the course
Th $125 \quad 2$ Beginnings of mathematics, info about the course
3 Beginnings of mathematics / Number systems
$\frac{\text { HWO Due }}{\text { Reading: }}$ On the origin of numbers
Reading: Number systems
Th21 $\quad 4$ Number systems
${ }^{T} \mathbf{T} 26$ Mathematics in Ancient Egypt
Th28 6 Mathematics in Ancient Egypt
Tu2 213 Mathematics in Ancient Egypt/Mesopotamia
HW1 due (Sources, beginnings)
Reading : These notes from the beginning until
Question 2 in Section 1.1.2. (Of course you are
welcome to read them all...)
HW2 due (Number systems)
Reading: This text from the beginning to
Section 1.5 Plimpton 322 (as usual, you are encouraged to read it all.)

What	$\%$ of the grade
Homework 0	1%
Homework Assignments	20%
Quizzes	20%
Woooclap Answers	20%
Presentation	14%
Paper	15%
Paper preparation	
(Anotated bibliography for	10%
the paper, baby draft, draft,	
abstract, outline)	

Topics

Topics (cont.)

- The beginning of mathematics

Number systems
Sources for studying history.
Ancient Egypt
Ancient Mesopotamia
Around the world
Hellenic Mathematics
Ancient and Medieval China

- Ancient and Medieval India
- Ancient and Medieval Islamic world
- European Renaissance
- Calculus
- Selected topics of modern mathematics

If you have a special interest in a math history topic, let me now. We might be able to cover it.

The beginning of mathematics

Ancient and Medieval India
Ancient and Medieval
Islamic world
European Renaissance

We will go deeper than wider

Ancient Mesopotamia
Around the world
Hellenic Mathematics
Ancient and Medieval China

Selected topics of modern mathematics

If you have a special interest in a math history topic, let me now. We
might be able to cover it.

Topics (cont.)

- We will discuss how mathematics has developed in various cultures around the world.
- There is an extremely large number of cultures
- We will have to choose a few sample cultures to represent the whole.
- The criteria for these choices is based, among other reasons on pedagogical arguments, on which culture have best-recorded mathematical history and accessible documentation to work with, weight of this culture in the mathematics we do today.

More about me and this course

- The main point of Wooclap questions, forms, deadlines and class activities is encouraging you to think and learn, not to evaluate. All this activities also help me to gauge your understanding.
- Constructive feedback is welcomed by me, your instructor.
- Feel free (and encouraged!) to discuss with me any classroom dynamics issue that affects you.

There are no dumb questions

What is counting?

Summary

What is counting?

What do you mean by counting?

What is counting?
Explain it to
somebody who does not know what it is.

By counting one (usually) means a process to determine the number of objects in a set.

Counting involves establishing a one-toone correspondence between two sets.

One set (let's call it the standard set) is a list of symbols, objects, etc.
The other set is variable.

Counting

If the standard set if composed of symbols, then each symbol
has to be different from the others.
has a prescribed order of use.

About counting

- Almost (if not all) societies have/had some awareness of number.
- Counting is establishing a one-to-one correspondence between two sets.
- Counting is linked to fingers. Later
- Making scratches
- Using objects (sticks, pebbles, shells)
- Tying knots.

Image crexitithtps:/I
craeaivekinderagatent Creativekindergatentlog. com
one-to-ne:-coresspondence-one-to-one-correspondence-
intervention-tor-kindergaten $/$

The concept of number, although basic is very hard to define rigorously.

- After counting, a need to record arises.

How and when humans started to count?

Approximate number sense and object tracking system.

Approximate number abilities and number sense

Two systems in humans and some animals

Approximate number system

- non-verbal
- representing and comparing
numerosities
- ratio is key.

Number sense: Mechanism for keeping track of individual objects

- independent of numerical ratio
- recognizing (not counting!) up to four

The presentation

- The goal is to teach something to the class.
- It is strongly encouraged included a learning activity for the class to help. (you can have a few extra minutes in this case)
- There will be a few minutes of questions afterwards. It is totally fine if you cannot to answer on the spot, and come back later with the response.
- Notes to help your memory are fine. However, the presentation cannot consist only of reading.

 but we will be a kind, supporting audience, rooting for you.
- 150 of words!!! at most in the slides (that is, about 15 per slide)
- If you need to break any of the rules to give a better presentation, discuss it with me beforehand.
- You are welcome to make an appointment with me to do a rehearsal of your presentation.

Communications spelled out

- ALL your course-related questions should be posted in the General Questions forum in the course Discussion board in Blackboard, so everyone can benefit.
- If you need to email me about something private that you do not feel comfortable to ask in Brightspace discussion forum please start your letter with a greeting and use complete English sentences.
- If you can answer or offer relevant comments to a question in the Discussion Forum, you are enthusiastically encouraged to do so.
- Come to see me in my office hours! (or make an appointment if you cannot make them)
- Any question about grades for homework and quizzes must be directed to the corresponding grader. Be aware that while the graders are in charge of the actual grading, I am the one designing the questions and determining how long quizzes are.

Math Point

- Addition to the syllabus: A "math point" is a concrete, purely mathematical aspect of the topic which is mastered by the student. This math point can be, for instance, the solution of a problem, or the proof of a statement. It does not have to be the "whole" mathematical aspect of the topic. Examples of math point are:
- Combinations and binomial coefficients as explained in Pascal's "Traite du triangle arithmetique".
- Liu Hui and Tsu Keng-chih 's calculation of the Volume of a Sphere
- Analogues of Pythagorean Theorem with the areas of different shapes, for instance squares, triangles and trapezoids.
- Desargues Theorem
- The paper will go over the specific logical problem in question and explain the mathematical and logical structure behind solving it.

Last meeting

- Websites are not necessarily reliable (even if they are educational)
- In this course we will work with peer reviewed articles and one or two websites (that I think are reliable)
- No system is perfect, but peer reviewed is the best we have in this area.

Discussion on the sources to use in this course.

Primary sources

A primary source is an original,

 firsthand, or direct piece of evidence or material that provides information about a particular topic or event.- Often they are created during the time period which is being studied (correspondence, diaries, newspapers, government documents, art)
- They can also be produced later by eyewitnesses or participants (memoirs, oral histories).
-We are often going to work with transcriptions and translation of primary sources.

Give a concrete example of a primary source. State a topic that can be studied using this primary source.
https://research.library.gsu.edu/HIST2110Primary

```
YOU
Give a concrete example of a
mathematical primary source. State a
topic that can be studied using this
document and how to find the text (a
translation if the primary source is not in
English)
```

Give a concrete example of a mathematical primary source. State a topic that can be studied using this document and how to find the text (a translation if the primary source is not in English) Feel free to use Google, Google Scholar, the Stony Brook library website, AI (artificial intelligence)... but make sure that your example exists, and is appropriate.

Give an example (in the form of a bibliography) of a primary source about mathematics in Ancient Egypt

Title: Rhind Mathematical Papyrus
Author: Unknown (Attributed to Ahmes)
Date: Around 1650 BC
Language: Ancient Egyptian
Description: A mathematical papyrus containing a collection of mathematical problems and solutions, covering topics such as arithmetic, fractions, geometry, and practical applications. It provides insights into the mathematical knowledge and practices of ancient Egyptians.

Bibliographic Entry:

Ahmes (attributed author). "Rhind Mathematical Papyrus." Translated by Arnold Buffum Chace, The Mathematical Association of America, 1927.

Additional Notes:

Arnold Buffum Chace's translation of the Rhind Mathematical Papyrus includes a commentary that explains the mathematical content and its historical context. The papyrus is also known as the Ahmes Papyrus, named after the scribe to whom it is attributed. It's worth noting that there

Give an example (in the form of a bibliography) of a primary source about $m^{\text {thematics in }}$ Ancient Mesopotamia

Title: Plimpton 322
Author: Unknown
Date: Around 1800 BC
Language: Sumerian
Description: A cuneiform tablet known as Plimpton 322, containing a collection of numerical tables and calculations, including Pythagorean triples. It offers insights into the mathematical knowledge and computational methods of ancient Mesopotamia.

Bibliographic Entry:

Robson, Eleanor, and Daniel Mansfield. "Babylonian Mathematics: Plimpton 322." The Mathematical Gazette, vol. 92, no. 523, 2008, pp. 193-197.

Additional Notes:

The Plimpton 322 tablet is one of the most famous mathematical artifacts from ancient Mesopotamia. It contains numerical tables that have been interpreted as evidence of advanced mathematical understanding, including the application of Pythagorean triples The article by Robson and Mansfield provides analysis and insights into the tablet's mathematical content and its significance. Please note that ' here are other scholarly works and interpretations re Regenerate

Give an example (in teh form of bibliography) of a primary source for the mathematics of Ancient mesopotamia

(5) ChatGPT

An example of a primary source for the mathematics of Ancient Mesopotamia could be a cuneiform tablet containing mathematical calculations. Here's a hypothetical bibliography entry for such a primary source:

Author: Unknown

Title: Mathematical Cuneiform Tablet from Ancient Mesopotamia Date: Circa 1800 BCE
Location: [Specify the museum or collection where the tablet is housed]
In this case, the primary source is the actual cuneiform tablet that contains mathematical notations and calculations from the Ancient Mesopotamian civilization. Researchers and historians would analyze the content on the tablet to understand the mathematical techniques and practices of that time.

Give a concrete example (in teh form of bibliography) of a primary source for the mathematics of Ancient mesopotamia

ChatGPT

While I cannot provide an actual bibliography entry for a specific cuneiform tablet, I can provide a general example to illustrate how it might look:

Author: Scribe of Ur-Nammu (if known)

Title: Mathematical Cuneiform Tablet: Calculations of Areas and Volumes
Date: Circa 2100 BCE
Location: British Museum, London
In this hypothetical example, the author might be the scribe who created the tablet, and the title indicates the content related to mathematical calculations of areas and volumes. The date reflects the estimated time period, and the location specifies where the tablet is currently housed for further study. Actual citations would provide more detailed information based on the specific tablet bein'g referenced.

Secondary sources

Secondary sources are works that study a topic through studying , researching analyzing and interpreting primary sources.

Give a concrete example of a secondary source. State a topic that can be studied using this secondary source.

Secondary sources include

 books and articles written from a historical perspective (later in time), reviews, textbooks,biographies, and indexes

In the bibliographies of your paper and presentation, you can only use relevant secondary sources which are from peer reviewed journals written in English (One way to find them is through the database linked in the course website). If you are in doubt of your source, consult with me.

[^0]Every fact in your paper that is not common knowledge, should have a reference to an item in your bibliography.

Is the Arabic translation of the Apollonius book V on Conic Sections. a primary source for some topic? If so, for what topic? If not, why not?

Give a concrete example of a

 mathematical, peer reviewed. secondary source, State a topic that can be studied using this secondary source. Feel free to use Google, Google Scholar, the Stony Brook library website, , AI (artificial intelligence)... but check it.Hint: Go to jstor.org or the SB library (https:// library.stonybrook.edu/

Examples of

 secondary sources
TheWorld＇s

 First Mathematics
black african traditional mathematics
Author（s）：Claudia Zaslavsky
Source：The Mathematics Teacher．APRIL 1970，Vol．63，No． 4 （APRIL 1970），pp．345－356 Publis National Council of Teachers of Mathematics
／

Did Euclid＇s Elements，Book I，Develop Geometry Axiomatically？
Author（s）：A．Seidenberg
Source：Archive for History of Exact Sciences，30．xII．1975，Vol．14，No． 4 （30．XII．1975），
pp． $263-295$
Published by：Springer
Stable URL：http：／／www．jstor．com／stable／411 33436

Tiu Zhang Suanshu 九章算衡（Nine Chapters on the Mathematical Art）An Overver
Author（s）：Lam Lay Yong
Source：Archive for History of Exact Sciences，June 1994，Vol．47，No． 1 （June 1994）
pp． $1-51$
Published by：Springer
Stable URL：https：／／www．jstor．org／stable／41133972

A reliable website？

 petroglyphs at Knowth and Newgrange burial mounds in Ireland（dating from about 3500 BCE and 3200 BCE respectively．These utilize a repeated zig－zag glyph for counting，a system that continued to be used in Britain and Ireland into the 1st millennium BCE．

Stonehenge，a Neolithic ceremonial and astronomical monument in England，which dates from around 2300 BCE ，also arguably exhibits examples of the use of 60 and 360 in the circle measurements，a practice which presumably developed quite independently of the sexagesimal counting system of the ancient Sumerian and Babylonians．
https：／／www．storyofmathematics．com／prehistoric．htm｜

Can this website be
 considered as secondary
 source？
 Is it reliable？Can you use it in this cWhy or why not？

https：／／www．storyofmathematics．com／
the left column represented larger values，much as in the modern decimal system，although of course using base 60 not base 10 ．Thus， 7 Y 7 in the Babylonian system represented 3,600 plus 60

-59 within each place value，two distinct symbols were used，a unit symbol（ τ ）and a ten symbol（（））which were combined in a similar way to the familiar system of Roman numerals（e．g． 23 would be shown as «＜77 ）．Thus，\uparrow 《＜TT represents 60 plus 23 ，or 83 ．However，the number 60 was represented buy the same symbol as the number 1 and，because they lacked an equivalent of the decimal point，the alplace value of a
symbol often had to be inferred from the context．
 that 60 has manydiviso $1,2,3,4,5,6,10,12,15,20,30$ and $60-$ in fact， 60 is the smallest integer divisible by（2zers from 1 to 6 ），and the continued modern－day usage of of 60 seconds in a minute miny es in hour，and $360(60 \times 6)$ degrees in a circle，are all testaments to the ancient Babylonian system．It is for similar reasons that 12 （which has factors of $1,2,3,4$ and 6 ）has been such a popular multiple historically（e．g． 12 months， 12 inches， 12 pence， 2×12 hours，etc）．

The Babylonians also developed another revolutionary mathematical concept，something else that the Egyptians，Greeks and Romans did not have，a circle character for zero，although its symbol was really still more of a placeholder than a number in its own right．
https：／／www．storyofmathematics．com／sumerian．html

https://mathed.byu.edu/~williams/Classes/300W2012/PDFs/ PPTs/Egyptian\%20PPT.pdf

Consider S the set of all sets.
So, \varnothing (the empty set) belongs to S .
The set containing the empty $\{\varnothing\}$ set belongs to S .
And so on.
Define $R=\{x$ in $S: x$ does not belong to $x\}$.

Does R belong to R ? Why or why not?

Russell's paradox

Define $R=\{x: x$ does not belong to $x\}$. then R belongs to R iff R does not belong to R.

- Russell wrote to Frege explaining his paradox in 1902.
- Russell's paradox showed that the axioms Frege was using to formalize his logic were inconsistent.
- Russell's letter arrived just as the second volume of Frege's Grundgesetze der Arithmetik (The Basic Laws of Arithmetic, 1893, 1903) was in press.
- Frege eventually felt forced to abandon many of his views about logic and mathematics.

Stanford Encyclopedia of Philosophy
https://plato.stanford.edu/entries/russell-paradox/\#HOTP

Counting in different societies

As I think about acts of integrity and grace, I realise that there is nothing in my knowledge to compare with Frege's dedication to truth. His entire life's work was on the verge of completion, much of his work had been ignored to the benefit of men infinitely less capable, his second volume was about to be published, and upon finding that his fundamental assumption was in error, he responded with intellectual pleasure clearly submerging any feelings of personal disappointment. It was almost superhuman and a telling indication of that of which men are capable if their dedication is to creative work and knowledge instead of cruder efforts to dominate and be known. (Quoted in van Heijenoort (1967), 127)

Review about counting

- Almost (if not all) societies have/had some awareness of
number, even if not all can define precisely what counting is. Counting is establishing a one-to-one
correspondence between two sets.
- Counting is closely linked to fingers.
- The concept of number, although basic is very hard to define rigorously. (Recall the barber's paradox)
- After counting, a need to record the result of the counting
arises. There are different ways of keeping records of
- After counting, a need to record the result of the counting
arises. There are different ways of keeping records of
manat ion hist mas aidithish "how many", for instance
- Making scratches
- Using objects (sticks, pebbles, shells)
- Tying knots.
\qquad

Example: Veddas of Sri Lanka counting

- Lived by eating fruit and turners of jungle plants.
- Had few words to deal with numbers. Some of these words (translated) were: a single, a couple, another one and many.
- To count, say, a pile of coconuts, a Vedda collected a heap of sticks. Then,
- For each coconut in the pile, she took a stick.
- Each time she took a stick, she said "another one"

What is your age in Oksapmin body counting? (In English, of course. Thus, if you are five years old, you would write "pinky finger", and if you are twenty seven, you wrote "other pinky finger")

Example: Oksapmin from Papua New Guinea

- Begins with the thumb on one hand
- Enumerates 27 places around the body,
- Ends on the little finger of the opposite hand.
- To indicate a particular number, one points to the appropriate body part and says the body part name.
- Example: to indicate the number 12 , one points to the ear which is the 12th body part and says the word foreer,
"nata".
This way of counting is
Forms of body counting were quite spread around the globe as late as the 1800s

Example: Nivkh people from lower Amur River - Russia

Example: Met can mean, for instance, "two leaves".

> Is there any noun in English similar to those of the Nivkh people? If so, write it down.

Counting in a planet of beings with only one hand, with three fingers in that lonely only hand

A group of friends, let's call them A, B and C want to count a large number of people.
1.The people starts walking before them. Each time a person walks by, A raises a finger (and keeps it raised) 2. When all fingers of A are raised, B raises one finger and A lowers all their fingers. The procedure continues repeating appropriately 1 . and 2 .
3.A some point, all fingers of B are raised. Then C one finger and B lowers all their fingers.
4.And so on.

According to Tietze, this form of counting was used by a tribe from South Africa

A way of counting

A group of friends, let's call them A, B and C want to count a large number of people.
1.The people starts walking before them. Each time a person walks by, A raises a finger (and keeps it raised)
2. When all fingers of A are raised, B raises one finger and A lowers all their fingers. The procedure continues repeating appropriately 1 . and 2 .
3.A some point, all fingers of B are raised. Then C raises one finger and B lowers all their fingers.
4.And so on.

According to Tietze, this form of counting was used by a tribe from South Africa

Mathematics is, of course, a part of culture. Every people inherits from its predecessors or contemporary neighbors along with ways of cooking marrying, worshiping, etc., ways of counting, calculating, and whatever else mathematics does. . . . Whether a people counts by fives, tens, twelves or twenties; whether it has no words for cardinal numbers beyond 5 , or possesses the most modern and highly developed mathematical conceptions, their mathematical behavior is determined by the mathematical culture which possesses them.
Leslie A. White, The Science of Culture (New York: Grove Press, 1949), p. 286.

History of mathematics hidden in language

Early word numbers

English	Gothic	Latin	Ancient Greek	Welsh	Sanskrit	Basque
one	ains	unus	heis	un	eka	bat
two	twai	duo	dyo	dau	dva	biga
three	threis	tres	treis	tn	tri	hirur
four	fidwor	quattuor	tettares	pedwar	catur	laur
five	fimf	quinque	pente	pump	panca	bortz
six	saihs	sex	hex	chwech	sad	sei
seven	sibun	septem	hepta	saith	sapta	zazpi
eight	ahtau	octo	okto	wyth	asta	zortzi
nine	niun	novem	ennea	aw	nava	bederatzi
ten	taihun	decem	deka	deg	dasa	hamar
eleven	ainlif	undecim	hendeka	un ar ddeg	ekaadasha	hamaika
twelve	twalif	duodecim	dodeka	deuddeg	dvaadashan	hamabi
twenty	twaitigjus	viginti	eikosi	ugain	vimsatih	hogoi
source: Barow-Green, June, Jeremy Gray, and Robin wison. The History of Mathematics: A source-Based Approach: volume 1. vol. 45. American Mathematical soco. 2019.						

A counting system is quite a complex construction, with

 different historical structures overlaying one another\section*{| glish | Gothic | Latin | Ancient Greek | Welsh | Sanskrit | que |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| one | ains | unus | heis | un | eka | bat |
| two | twai | duo | dyo | dau | dva | biga |
| three | threis | tres | treis | tn | tri | hirur |
| four | fidwor | quattuor | tettares | pedwar | catur | laur |
| five | fimf | quinque | pente | pump | panca | bortz |
| six | saihs | sex | hex | chwech | sad | sei |
| seven | sibun | septem | hepta | saith | sapta | zazpi |
| eight | ahtau | octo | okto | wyth | asta | zortzi |
| nine | niun | novem | ennea | aw | nava | bederatzi |
| ten | taihun | decem | deka | deg | dasa | ham |
| eleven | ainlif | undecim | hendeka | un ar ddeg | ekaadasha | hamaika |
| twe | twalif | duodecim | dodeka | deuddeg | dvaadashan | ham |
| wenty | twaitigus | viginti | eikosi | ugain | vimsatih | hogoi |
 Early word numbers}

- Our words 'eleven' and 'twelve' seem quite close to their Gothic equivalents, but not to anything else here: these Gothic words mean something like 'one left' and 'two left', in the sense of 'left over'.
- Since this construction occurs in most other old northern European languages, we may infer that at an A counting system is quite a complex construction, with different historical structures overlaying one another there were northern European tribes whose counting words went up only to 'ten'. In order to count to 'eleven' and 'twelve', when needed, they took away ten and counted what was left.
Source: Barrow-Green, June, Jeremy Gray, and Robin Wilson. The History of Mathematics: A Source-Based Approach: Volume 1. Vol. 45. American Mathematical Soc., 2019.

Early word numbers
English Gothic Latin

Can you remember a historical occurrence of the word "score"? (Where score mean 20)

- In French, some higher numbers are formed differently.
- The word for 20 ('vingt') seems independent of the words for 2 ('deux') and 10 ('dix'),
-, It is used in some higher number words such as 'quatre-vingts-sept' (four-twenties-seven) for 87.
- So French counting words have traces of a twenty-base, as well as a tenbase: an example of the latter is 'dix-huit' (ten-eight) for 18.

Source: Barrow-Green Mathematical Soc., 2019.

Four score and seven years ago our fathers brought forth on this continent, a new nation conceived in Liberty, and dedicated to the proposition that all men are created equal.
Now we are engaged in a great civil war, testing whether that nation, or any nation so conceived and so dedicated, can long endure. We are met on a great battle-field of that war. We have come to dedicate a portion of that field, as a final resting place for those who here gave their lives that that nation might live. It is altogether fitting and proper that we should do this. But, in a larger sense, we can not dedicate -- we can not consecrate -- we can not hallow -this ground. The brave men, living and dead, who struggled here, have consecrated it, far above our poor power to add or detract. The world will little note, nor long remember what we say here, but it can never forget what they did here. It is for us the living, rather, to be dedicated here to the unfinished work which they who fought here have thus far so nobly advanced. It is rather for us to be here dedicated to the great task remaining before us -- that from these honored dead we take increased devotion to that cause for which they gave the last full measure of devotion -- that we here highly resolve that these dead shall not have died in vain -- that this nation, under God, shall have a new birth of freedom -- and that government of the people, by the people, for the people, shall not perish from the earth.

Abraham Lincoln The Gettysburg Address Gettysburg, Pennsylvania November 19, 1863

Early word numbers

- General agreement: English, Russian, Persian, Afghan, and most European languages are descended from an original Indo-European language spoken possibly around 4000 BC.
Similarities in the words for 100 suggest that there was a counting word for 'hundred' in the original Indo-European languages.
Counting by twenties, which can be seen residually in French and Welsh, seems to have been the practice in languages such as Basque, which were spoken in Europe before the spread of IndoEuropean.
This shows that we can begin to build up some knowledge about the past by piecing together several different sorts of evidence. It seems that our spoken counting system may be from 5000 to 8000 years old.

We can even form a hypothesis about the age of our counting system, as seen in its number words up to 'nine or 'ten'. There are several similarities between the words that become more apparent when you say them aloud. The most striking example, because it is so unexpected, is how close to Latin, or even to Gothic and English, the Sanskrit number words can be made to sound.
It thus seems plausible that Sanskrit and the Western languages (except for Basque, which seems rather different) may have had a common root, which from the given dating was before or during the second millennium BC

Early word numbers

Since Latin, Greek, Welsh, and Sanskrit seem to have much the same word for 'ten', we can reasonably infer that the counting system went up at least to ten by this time.
To justify this hypothesis we clearly need to examine much more evidence of languages old and new and other historical information relating to the movement of tribes and peoples and cultural influences.

Source: Barrow-Green, June, Jeremy Gray, and Robin Wilson. The History of Mathematics: A Source-Based Approach: Volume 1. Vol. 45. American Sutrematical Soc. 2019.

From Two to Three, a gigantic step

- It appears that language contains evidence that it was a struggle to pass beyond two
- Three is often associated with many:
- three and through
- trois, and très, (in French)
- After one and two, the ordinals were formed "third, fourth, fifth,..." Formerly, first kept its meaning, which is before all the others, while we find second used for "the other" or "the one that comes after", compare the Latin "secundus" [from sequi, secutus to follow]. It is difficult to draw a distinction between second and twice. Let us go on further, leaving the few for the many.

Source: Barrow-Green, June, Jeremy Gray, and Robin Wilson. The History of Mathematics: A Source-Based Approach: Volume 1. Vol. 45. America Mathematical Soc., 2019

```
"The same way you can feed your
body junk food, we are feeding our
mind junk information. We need an
information diet. People should
think carefully about the amounts
and the quality of the information
they take in."
Yuval Noah Harari
```


[^0]: Every item in your bibliography should be referenced.

