

During Tang dynasty (618-906), a body of mathematical books was assembled for official use in the imperial examinations.

Jo 1115, a printed edition of the Nine Chapters of the Mathematical Art appeared.

The Song (Sung) dynasty (960-1279) and the early years as the Mongol dynasty of the Yvan Metudy Metudy Will thin

were a period of greatest spowering of ancient Chinese mathematics.

- Ch'in Chiu-shao 1247 book of indeterminate aquations Chinese reminder theorem solution of higher degree equation. extraction of square and cubic nooth.

- Yan Hui - 1261 "A detailed Analysis of the Mathematical Methods in the Nine Chapters" 1274-5 "The Method of Computation of Yang Hui"

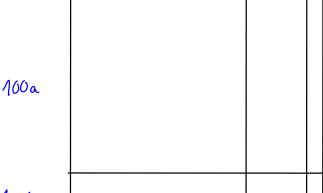
- worked with decimal gractions, wrote them in a way reminescent of our present method. earliest representation of the Pascal triangle.

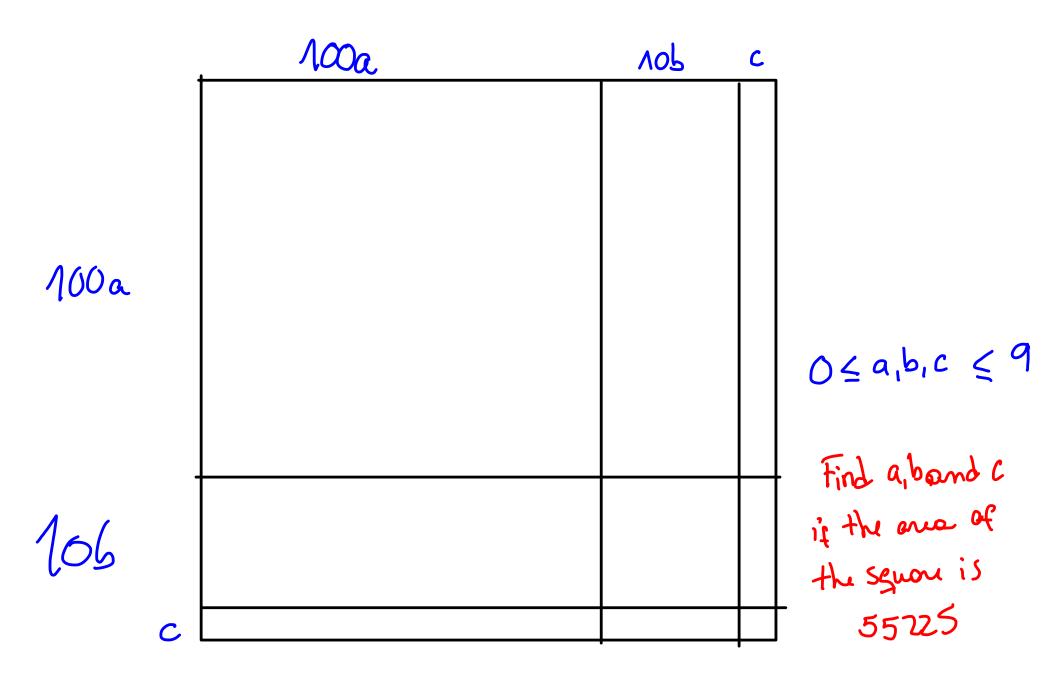
- Zhu Shijie (Chu Shihchieh) - Chinese arithmetic algebraic-computational method - "matrix" sol'n or systems of linear equation extended to equations of higher deque.

	100a	vop	C
100a			
106			
C			

Algorithm to compute the square root of 55225

· Since 100° < 55225 < 90005, we know that > fy

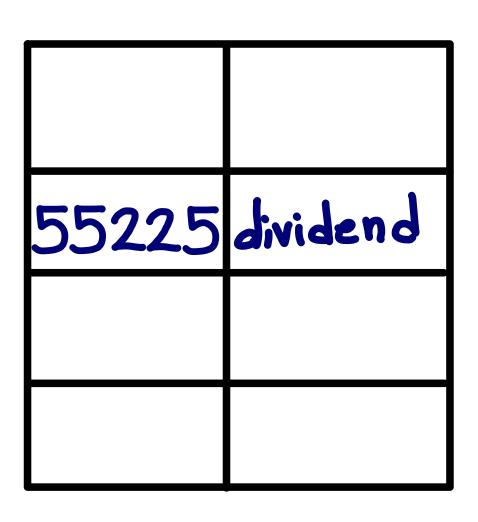

$$x/x^2 = 55225$$


$$x^2 = 100^2 a^2 + 10^2 b^2 + c^2 +$$

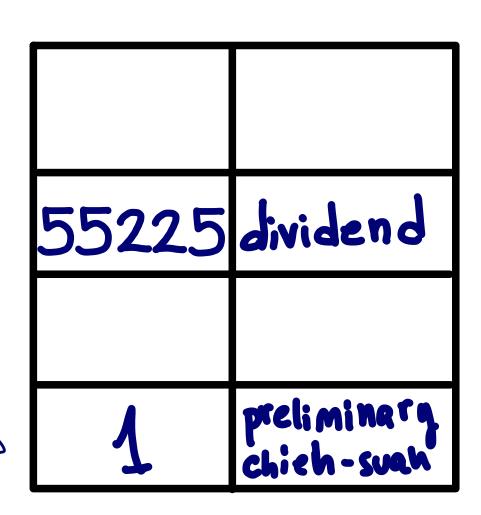
$$52255 - (2.160) = 10^{2}6^{2} + 100.10.2.2.6 + c^{2} + 2.106c + 21002c$$

$$5255 - (2.1005 = 10.40 + 4000 + 2.10.3.4 + 4000 + 2.10.3 + 4000 + 2.$$

$$2SS = 12000 + 400 + 2000 = 4600 + 2000 = 2325 = 600 + 2000 = 4600 + 2000 = 2325 = 6000 + 2000 = 20$$



step 1 置積1)為實2).


Put the (known) square (of a certain unknown number) (in the second row from the top of the counting-board) to be the Shih \bigcirc , dividend.

step 2 借³) — 算

Make use of one counting-rod (and put it in the bottom row of the counting-board in the furthest right-hand digit column) [This one counting-rod is to be called the pre-liminary Chieh-suan 世算].

C1-

step 3 步1) 之, 超一等.

This one counting-rod is moved forward (from right to left) by steps of two places each (as far as it can go without transgressing the furthest left digit of the dividend)
[This one counting-rod, with its new place-value, is to be called the Chieh-suan 借算].

CIA

1-> 10000 10000 chich-such

Move this counting-rod to the left by 2 steps of 2 places

step 4 議")所得.

(The first figure of the root is selected through trial, taking 1, 2, 3, one after another). Discuss the So-tê, Fr (3). (The So-tê is the product of the first root figure under trial multiplied by the Chieh-suan). (What is meant by 'discussion' is that when the selected number has multiplied the So-tê once, the product must not be greater than the dividend; and at the same time the largest possible root figure must be selected).

[The selected figure is placed in the top row of the countingboard. This is the Fang frow which will ultimately contain the answer.]

10000 chieh-sunh

2	
55225	dividend
2×40.000	
10000	chieh-suah

3		
55225	dividend	
3 × 10 000		
10000	chieh-suah	

step 5 以一²) 乘所借一算爲法¹).

The Chieh-suan is multiplied by the (selected) first figure of the root 2). The product is the divisor, $Fa \not\sqsubseteq$ (which is put in the third row from the top). [It should be noted that in this square root series, but not in the cube root series, the values of $So-t\hat{e}$ and Fa are identical.]

- 2	
	dividend
·2000	divisor
10000	chich-suah

step 6 而以除.

This divisor, Fa, is used to divide the dividend (and the remainder is put in the second row from the top of the counting-board). [This is to be called the first remainder].

55225 = $2 \times 2000 + 45225$

2	
15225	first remainder
20000	divisor
10000	chich-such

step 7 除已, 倍法為定法, 其復除, 折法, 心态,

- a) After the division has been made, the divisor, Fa, is doubled to form the Ting-fa,
- b) The $Ting-fa^1$ is cut short (i.e. moved back by one digit) [and this is the (first) fixed divisor, $Ting-fa_1$] in preparation for the next division operation.

2			2	
15225	first remainder		15225	first remainder
2×20 000		, <i>D</i>	4000	divisor
10000	chich-sua		10000	chich-sua

step 8 而下復置借算步之如初·

Again the counting-rod (which took up its position in step 3) in the bottom row is moved (backward from left to right by one step of two places) as before 1). [This counting-rod, with its new place-value, is to be called the *Chieh-suan*₁.]

2	
15225	first remainder
4000	divisor
10000	chich-sua

2	
15225	first remainder
4000	divisor
100	chich-such

Second Phase:

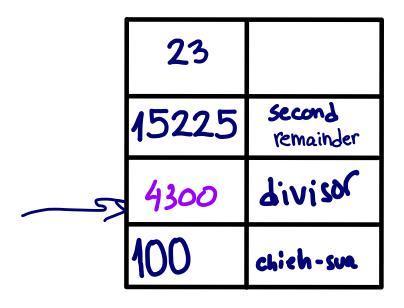
step 9 2)

(Again, the second figure of the root is selected through trial and discussion. The discussion aims to find the $Ting-fa_2$ by the process given in step 10. The product of the $Ting-fa_2$ multiplied by the second figure of the root under trial must not be greater than the first remainder. The largest figure which does not violate this condition is

selected).

21	
15225	first rangin lar
14 9100	remainder
4000+11100	divisor
100.	chieh-sua

22	
15225 2 x 4200	first remainder
4000 + 2,100	divisor
100	chieh-sua


23	
15225 3 x 4300	first remainder
4000+3~100	divisor
100	chieh-sua

24	
15225	first remainder
4000+4=100	divisor
100	chieh-sua

step 10 以復議一乘之,所得副以加定法.

The $Chieh-suan_1$ is multiplied by the second figure of the root 1). (The product is the $So-t\hat{e}_2$). The $so-t\hat{e}_2$ is added to the $Ting-fa_1$. (The result is called $Ting-fa_2$, which is put in the third row from the top.)

23	
45225 3 x 4300	first remainder
4000+3~100	divisor
100	chieh-sua

Step 11. 以除.

(The first remainder) is divided by $(Ting-fa_2)$ (and the remainder is put in the second row from the top). [This remainder is the second remainder].

23	
2325	Second remainder
4300	divisor
100	chieh-sua

Step 12 以所得副從定法,復除,折.

So-tê is added 2) to $Ting-fa_2$, and the sum [to be called $Ts'ung\ Ting\ Fa$] is cut short (i.e. moved back by one place), [and this is the $Ts'ung-ting-fa_1'$;] in preparation for the next division operation.

23			23	
2325	Second remainder	, <u>7</u>	2325	Second remainder
4300	divisor		4300+3x 100	divisor
100	chieh-sua		100	chieh-sua

Step 13 下如前.

Proceed similarly to the previous operations (step 8). [The Chieh-suan₁, cut short, i.e. moved back, by two places, becomes the Chieh-suan₁'].

23		23	
2325	Second remainder	2325	Second remainder
460	divisor	460	divisor
100	chieh-sua	1	chieh-sua

Third Phase:

Steps 14, 15, and 16.

(will be necessary only if the root comes to three figures; in which case they will follow steps 9, 10, and 11 precisely).

231				232					233			
325 461 ×1	second remainder		24	2325 462 x2		Second remainder		2325 463 x 3		Second remainder		
460+ divisor			460th divisor			4604		divisor				
1 chieh-sua			1 chieh-sua			1		chieh-sua				
23	4			23	5				23	6		
232 464 ×	54	Second remainde	r	2329 465 x S		second remainde	r		232 466×6		second remaind	er
460) ₄ 4	divisor		460)+5	diviso			460	746	diviso	
1		chieh-su		1		chieh-su			1		chieh-su	

Step 17 開之不盡者爲不可開,以面命之.

If the (last remainder) is not equal to zero (when the *Chieh-suan*₁ⁿ' has been moved back to the unit digit position) this means that the operation cannot be completed (within the bounds of an integral root) ¹), but the operation is continued as before ²).