MAT 211 List of review problems

(1) Find the projection of the vector $\vec{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ onto the vector $\vec{v} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$.

(2) Find a single equation for the plane \mathcal{P} in \mathbb{R}^3 which passes through the $P = \begin{bmatrix} 1\\2\\0 \end{bmatrix}$ and has normal

vector
$$\vec{n} = \begin{bmatrix} -1\\ 3\\ 1 \end{bmatrix}$$
.

(3) Write the equations of the plane passing through P with direction vectors $\vec{u} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ and

$$\vec{v} = \begin{bmatrix} 1\\3\\1 \end{bmatrix}$$
, in a) parametric and b) vector form.

- (4) Find the equation of the line passing through $P = \begin{bmatrix} -1 \\ -3 \\ 1 \end{bmatrix}$ and $Q = \begin{bmatrix} -1 \\ 3 \\ -1 \end{bmatrix}$, where
- (5) Find the vector form of the line in \mathbb{R}^2 passing through $P = \begin{bmatrix} 2\\2 \end{bmatrix}$ and perpendicular to the line with general equation 3x 2y = 33.
- (6) Find the distance from the point $P = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ to the line ℓ of equation 3x + y = 1
- (7) Determine which of the equations below are linear. If any equation is not linear, explain why.
 - (a) $x + y + \sin z = 3$.
 - (b) $x + y^2 = 0$.
 - (c) 2x + 2y = 2.
 - (d) x.y = 2.
- (8) Determine geometrically whether each of the systems has a unique solution, infinitely many solutions, or no solutions. Then solve the systems algebraically to confirm your answer.

- (a) $\begin{aligned} x + y &= 1 \\ x 2y &= 1 \end{aligned}$
- (b) $\begin{aligned} x + y &= 1\\ 2x + 2y &= 2 \end{aligned}$
- (c) $\begin{aligned} x + y &= 1\\ 2x + 2y &= -2 \end{aligned}$
- (9) If possible, give examples of the following types of systems of equations. If it is not possible, explain why.
 - (a) 2 variables, 2 equations, infinitely many solutions.
 - (b) 2 variables, 1 equations, infinitely many solutions.
 - (c) 2 variables, 2 equations, a unique solution.
 - (d) 2 variables, 1 equations, a unique solution.
 - (e) 2 variables, 2 equations, no solutions.
 - (f) 2 variables, 1 equations, no solutions.
- (10) Solve the given system of equations.

x + y + 2z = 0 x + z = -14x - 2y + z = 2

(11) Determine by inspection (that is, without performing any calculations) whether a linear system with each of the given augmented matrices has a unique solution, no solution or infinitely many solutions. Justify your answer.

(a)
$$\begin{pmatrix} 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & 2 \end{pmatrix}$$

(b) $\begin{pmatrix} 0 & 0 & 1 & | & 1 \\ 0 & 1 & 0 & | & -2 \\ 1 & 0 & 0 & | & 2 \end{pmatrix}$
(c) $\begin{pmatrix} 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & -2 \\ 0 & 0 & 0 & | & 2 \end{pmatrix}$

(d)
$$\begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 1 & 1 & | & -2 \\ 0 & 0 & 1 & | & 2 \end{pmatrix}$$

(12) (a) Show that $\mathbb{R}^3 = \operatorname{span}(\vec{u}, \vec{v}, \vec{w})$, where $\vec{u} = \begin{vmatrix} -1 \\ -2 \\ 1 \end{vmatrix}$, $\vec{v} = \begin{vmatrix} 0 \\ 2 \\ -1 \end{vmatrix}$, $\vec{w} = \begin{vmatrix} -2 \\ 3 \\ -1 \end{vmatrix}$.

(b) Write
$$z = \begin{bmatrix} -1 \\ 3 \\ 1 \end{bmatrix}$$
 as a linear combination of \vec{u}, \vec{v} and \vec{w} .

(13) Describe the span of $v = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$ and $w = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$ a) geometrically b) algebraically.

(14) Determine whether the vectors $\vec{u} = \begin{bmatrix} -1\\1\\1 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 0\\2\\-1 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 0\\3\\3 \end{bmatrix}$ are linearly independent.

(15) Given
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 find all matrices B such that $AB = BA$,

- (16) Given the matrix $a = \begin{pmatrix} 1 & 1 \\ 2 & -4 \end{pmatrix}$.
 - (a) Find A^{-1} .
 - (b) Use A^{-1} found in (a). to solve the system $A\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
 - (c) Find the inverse of the given elementary matrix $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

(d) Find the inverse of the matrix.
$$\begin{pmatrix} 1 & 2 & 3 \\ -2 & -1 & -2 \\ 0 & 4 & 5 \end{pmatrix}$$